M.K. Sharmaa, R.N. Gayenb, A.K. Palb,
,
, D. Kanjilalc and Ratnamala Chatterjeea
Abstract
Mn-doped (2.6–4.8 at%) aligned zinc oxide (Mn:ZnO) nanorod-films were synthesized by hybrid wet chemical route onto glass substrates. The chemical composition, structural, microstructural and magnetic studies were performed to investigate the origin of observed room temperature ferromagnetism (
0.11 μB/Mn) in these Mn doped ZnO nanorod-films. XPS studies indicated that incorporated Mn was in Mn2+ and Mn4+ states. Mn2+ atomic concentration was found to be significantly larger than Mn4+ concentration in all the samples. Disappearance of the Raman peak at
577 cm−1 arising due to the Zn interstitials may be related to the substitution of Mn2+ in the Zn2+ site with annealing. Thus, Mn metal inclusions as Mn2+ in the ZnO lattice are possibly responsible for such large magnetic moment in the films.
Highlights
► Mn-doped aligned zinc oxide (Mn:ZnO) nanorod-films were synthesized by hybrid wet chemical route. ► Increase in atomic concentration of Mn (2.6–4.8 at%) did not affect vertical alignment. ► No observable secondary phases were present in the films. ► M–H hysteresis curves indicated that saturation magnetization (MS) increased with Mn concentration. ► Substitution of Mn2+ in the Zn2+ site was responsible for the observed room temperature ferromagnetism.
