На правах рукописи

W

Иванова Ирина Владимировна

СИНТЕЗ, КРИСТАЛЛОХИМИЧЕСКИЕ И ОПТИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ Zn2-2xMn2xSiO4, (Zn0,96-xMg0,04)2Mn2xSiO4 и Zn2-2xCu2xSiO4 СО СТРУКТУРОЙ ВИЛЛЕМИТА

Специальность: 1.4.4. Физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2023

Работа выполнена в Федеральном государственном учреждении науки Институте химии твердого тела Уральского отделения Российской академии наук.

Научный руководитель:	Красненко Татьяна Илларионовна		
	доктор химических наук, профессор, Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук, главный научный сотрудник		
Официальные оппоненты:	Пийр Ирина Вадимовна		
	доктор химических наук, доцент, Федеральный исследовательский центр «Коми научный центр Уральского отделения Российской академии наук», главный научный сотрудник		
	Дунюшкина Лилия Адибовна		
	доктор химических наук, Федеральное государ- ственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук, ведущий научный сотрудник		
Ведущая организация:	Федеральное государственное автономное образо- вательное учреждение высшего образования «Тюменский государственный университет»		

Защита состоится «__» ____ 202_ года в _____ часов на заседании диссертационного совета Д 004.004.01 на базе Федерального государственного бюджетного учреждения науки Института химии твердого тела Уральского отделения Российской академии наук (ИХТТ УрО РАН) по адресу: 620108 г. Екатеринбург, ул. Первомайская, 91, Зал заседаний Ученого совета.

С диссертацией можно ознакомиться в Центральной научной библиотеке Уральского отделения РАН и на сайте ИХТТ УрО РАН: http://www.ihim.uran.ru.

Автореферат разослан «__» ____ 2023 г.

Ученый секретарь диссертационного совета к.х.н., в.н.с.

Пасечник Л. А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

В современном материаловедении силикаты относят к числу действующих и перспективных материалов для различных практических приложений. Это обусловлено не только комплексом уникальных физико-химических свойств силикатов, таких как термостойкость, высокая химическая и радиационная устойчивость, но и приемлемыми экологическими показателями на стадиях производства, эксплуатации и утилизации. Особое внимание в настоящее время привлекает создание оптических материалов на основе силикатных матриц, в том числе на основе силиката цинка Zn₂SiO₄ со структурой виллемита.

Одним из наиболее активно исследуемых является люминофор зеленого свечения Zn_2SiO_4 : Mn^{2+} [1]. Он имеет конкурентные преимущества по сравнению с другими известными люминофорами зеленого свечения: более устойчив при эксплуатации, чем CsPbBr₃, не требует высокого давления при синтезе как Ba₃Si₆O₁₂N₂: Eu²⁺, β -SiAlON: Eu²⁺, безопасен и нетоксичен в отличие от сульфидов Ga₂S₃: Eu²⁺, CaGa₂S₄: Eu²⁺, ZnS/CdSe. Однако спектроскопические характеристики Zn₂SiO₄: Mn²⁺ нередко уступают известным зеленым люминофорам. Относительно низкая интенсивность люминесценции обусловлена ограничением прямого электронного перехода ${}^{4}T_{1} \rightarrow {}^{6}A_{1}$, который запрещен по спину и четности для Mn²⁺ в тетраэдрической координации. Полное или частичное снятие указанных запретов может быть достигнуто деформационными искажениями координационного полиэдра иона-активатора, вызванными увеличением концентрации ионов марганца в твердых растворах Zn_{2-2x}Mn_{2x}SiO₄ и (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄. В связи с этим в работе выполнено их систематическое разностороннее кристаллохимическое и спектроскопическое исследование, в котором установлена взаимосвязь между составом, кристаллической структурой и люминесцентными свойствами.

Возможность использования матрицы виллемита для других оптических материалов также была реализована при создании пигмента «кобальт спектральный», который является твердым раствором замещения $Zn_{2-2x}Co_{2x}SiO_4$. В настоящей работе рассмотрена возможность замещения ионов цинка на ион-хромофор медь, что позволяет расширить цветовую гамму пигментов со структурой виллемита.

Характерной особенностью исследуемых твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$, $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$ и $Zn_{2-2x}Cu_{2x}SiO_4$ является способность ионов марганца и меди изменять степень окисления $(Mn^{2+} \rightarrow Mn^{3+}, Cu^{2+} \rightarrow Cu^+)$, приближая тем самым свой радиус к радиусу замещаемого иона цинка $(r(Zn^{2+}) = 0,74 \text{ Å}, r(Mn^{2+}) = 0,80 \text{ Å}, r(Mn^{3+}) = 0,72 \text{ Å}, r(Cu^{2+}) = 0,71 \text{ Å}, r(Cu^+) = 0,75 \text{ Å}). Актуальным с точки зрения фундаментальных кристаллохимических представлений становится в настоящем исследовании выявление взаимосвязи кристаллической структуры, зарядового состояния ионовдопантов и функциональных свойств твердых растворов <math>Zn_{2-2x}Mn_{2x}SiO_4$, $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$ и $Zn_{2-2x}Cu_{2x}SiO_4$.

Особое внимание в работе уделено синтезу твердых растворов, поскольку при химическом взаимодействии исходных простых оксидов последовательность фазообразования представляет собой сложный, ранее не изученный, термоактивированный процесс с участием соединений, содержащих разнозарядные ионы-допанты.

Об актуальности проводимых исследований свидетельствует поддержка работы грантами РФФИ: «Структурно-химический механизм формирования физикосвойств люминесцентных материалов основе химических на виллемита» (№ 19-03-00189), «Оптимизация оптических свойств люминофора зеленого свечения на базе Zn₂SiO₄ модифицированием катионной подсистемы кристаллической структуры» (№ 18-38-00568).

Целью диссертационной работы является установление структурнохимического механизма формирования оптических свойств твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$, $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$ и $Zn_{2-2x}Cu_{2x}SiO_4$, со структурой виллемита.

Поставленная цель достигалась решением следующих задач:

1. исследовать последовательность фазообразования твердого раствора Zn_{2-2x}Mn_{2x}SiO₄ в процессе термоактивации смеси оксидов Mn₂O₃, ZnO, SiO₂;

2. определить концентрационные зависимости кристаллохимических параметров Zn_{2-2x}Mn_{2x}SiO₄, (Zn_{0.96-x}Mg_{0.04})₂Mn_{2x}SiO₄ и зарядового состояния ионов марганца;

3. получить концентрационные зависимости интенсивности люминесценции и соотнести их с кристаллохимическими особенностями твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$ и ($Zn_{0.96-x}Mg_{0.04}$)₂ $Mn_{2x}SiO_4$;

4. исследовать процесс фазообразования твердого раствора Zn_{2-2x}Cu_{2x}SiO₄ при различных методах синтеза, отработать температурный режим получения однофазных образцов, определить кристаллохимические характеристики твердого раствора Zn_{2-2x}Cu_{2x}SiO₄.

Научная новизна работы:

1. впервые установлено, что на начальном этапе термической активации исходной смеси оксидов Mn_2O_3 , ZnO и SiO₂ при твердофазном синтезе $Zn_{2-2x}Mn_{2x}SiO_4$ образуются промежуточные соединения $ZnMn^{3+}_2O_4$, $Mn^{2+}SiO_3$, Zn_2SiO_4 . Реакционная способность этих фаз существенно увеличивается лишь при достижении высоких температур;

2. установлено, что протяженность твердого раствора $Zn_{2-2x}Mn_{2x}SiO_4$ ограничена составом с x = 0,20. Отклонение от закона Вегарда при x больше 0,13 связано с частичным окислением ионов Mn^{2+} до Mn^{3+} , а смена механизма образования твердого раствора замещения на замещения - вычитания сопровождается образованием вакансий в цинковой подрешетке;

3. обнаружено, что введение в катионную подрешетку $Zn_{2-2x}Mn_{2x}SiO_4$ в качестве ионов-содопантов Mg^{2+} приводит к линейной концентрационной зависимости параметров элементарной ячейки твердого раствора ($Zn_{0,96-x}Mg_{0,04}$)₂ $Mn_{2x}SiO_4$ и сохранению зарядового состояния марганца равным 2+;

4. впервые установлено, что максимум интенсивности люминесценции достигается при x = 0,13 для Zn_{2-2x}Mn_{2x}SiO₄ и x = 0,06 для (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄. Показано, что в обоих случаях длина волны излучения основного перехода ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ увеличивается с ростом концентрации марганца. Впервые показано, что частичное замещение ионов цинка магнием (4 мол.%) в Zn_{2-2x}Mn_{2x}SiO₄ увеличивает интенсивность зеленой люминесценции в интервале концентраций при $0 < x \le 0,06$ за счет уменьшения потерь энергии на неосновной переход ${}^{4}T_{2}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$;

5. методами «мягкой» химии и твердофазного синтеза получен твердый раствор $Zn_{2-2x}Cu_{2x}SiO_4$. Впервые показано, что синтез $Zn_{2-2x}Cu_{2x}SiO_4$ посредством золь-гель метода представляет путь, позволяющий получить твердый раствор замещения.

Теоретическая и практическая значимость

В ходе настоящего исследования установлены кристаллохимические закономерности формирования оптических свойств соединений со структурой виллемита при изовалентном замещении катионов цинка в Zn₂SiO₄ ионами марганца и меди. Проведена всесторонняя аттестация образцов, предложены конкретные составы материалов для люминофоров и пигментов, пригодных для эксплуатации.

Исследования процесса твердофазного синтеза и люминесцентных свойств силиката цинка, допированного марганцем, позволили выявить составы твердого раствора Zn_{2-2x}Mn_{2x}SiO₄ с наиболее высокими значениями интенсивности люминесценции. Эта информация является предпосылкой для рассмотрения регламента синтеза люминофора Zn₂SiO₄: Mn²⁺.

Исследование влияния содопирования ионами магния люминофора Zn_2SiO_4 : Mn^{2+} показало принципиальную возможность управления его оптическими свойствами. Показано, что введение оптически неактивного иона магния позволило достичь того же значения интенсивности люминесценции, что и Zn_2SiO_4 : Mn^{2+} , при уменьшенной практически в два раза концентрации марганца. Этот результат также является физико-химическим обоснованием для получения люминофора зеленого свечения на основе виллемита с максимальной интенсивностью свечения при пониженных концентрациях оптически активных ионов.

Цветовые характеристики $Zn_{2-2x}Cu_{2x}SiO_4$, выявленные в рамках настоящей работы, позволяют говорить о его возможном применении. В частности, этот материал расширяет палитру уже известных силикатных пигментов сине-голубой гаммы.

Положения, выносимые на защиту:

1. получение твердого раствора Zn_{2-2x}Cu_{2x}SiO₄ твердофазным методом и методами «мягкой» химии;

2. влияние температуры конечной термообработки $Zn_{2-2x}Cu_{2x}SiO_4$ на его цветовые характеристики;

3. образование промежуточных соединений $ZnMn_2O_4$, $MnSiO_3$ при твердофазном синтезе твердого раствора $Zn_{2-2x}Mn_{2x}SiO_4$, изменение зарядового состояния и локального окружения ионов марганца в процессе формирования;

4. зависимость интенсивности люминесценции основного перехода ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ в твердых растворах $Zn_{2-2x}Mn_{2x}SiO_{4}$, $(Zn_{0,96-x}Mg_{0,04})_{2}Mn_{2x}SiO_{4}$ с ростом концентрации марганца до x = 0,13 и 0,06, соответственно;

5. влияние неосновного перехода ${}^{4}T_{2}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ на интенсивность зеленой люминесценции, обусловленной основным переходом ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ в твердых растворах Zn_{2-2x}Mn_{2x}SiO₄ и (Zn_{0.96-x}Mg_{0.04})₂Mn_{2x}SiO₄.

Личный вклад автора. Результаты, приведенные в диссертации, получены самим автором или при его непосредственном участии. Постановка цели и задач исследования, обобщение результатов были проведены совместно с научным руководителем. Подготовка научных докладов и публикаций выполнены в составе коллектива соавторов.

Достоверность результатов и апробация работы

Достоверность результатов определяется комплексным подходом к выбору методов исследования, совокупностью полученных экспериментальных данных, дополняющих друг друга, использованием современных аттестованных методов исследования. Основные результаты исследования доложены и обсуждены на всероссийских и международных конференциях, в их числе: XXI Менделеевский съезд по общей и прикладной химии (Санкт-Петербург, Россия, 2019); III Всероссийская конференция «Горячие точки химии твердого тела: от новых идей к новым материалам» (Новосибирск, Россия, 2019); Региональная конференция по фундаментальной и прикладной химии «Химия-XXI век» (Ижевск, Россия 2019), 13-й симпозиум с международным участием «Термодинамика и Материаловедение» (Новосибирск, Россия, 2020); XVI International Conference on Thermal Analysis and Calorimetry in Russia (Москва, Россия, 2020); X Всероссийской конференция «Керамика и композиционные материалы» (Сыктывкар, Россия, 2021); Всероссийская конференция «Химия твердого тела и функциональные материалы» (Екатеринбург, Россия 2022).

Публикации. По материалам диссертации опубликовано 8 статей в рецензируемых изданиях, 2 патента и 11 работ в трудах научных конференций.

Структура и объем диссертации

Диссертационная работа состоит из введения, четырех глав, заключения и списка цитируемой литературы. Общий объем диссертации 111 страниц, включая 65 рисунков и 14 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследования, сформулированы цель и задачи работы. Показана научная новизна и научно-практическая значимость исследования, перечислены выносимые на защиту положения, приведена информация о структуре и объеме работы, публикациях и апробации.

В первой главе представлены основные сведения о кристаллической структуре и свойствах исследуемых твердых растворов $Zn_{2-2x}Cu_{2x}SiO_4$, $Zn_{2-2x}Mn_{2x}SiO_4$ и $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$. Дано описание механизма формирования цветовой окраски и люминесценции ионами меди и марганца, а также представлена информация о факторах влияния на оптические свойства материалов.

Во второй главе изложены методы синтеза и методы исследования, применяемые в настоящей работе, а также методики обработки экспериментальных данных.

Синтез образцов проведен с использованием методов «мягкой» химии и твердофазного метода. Получены образцы Zn_{2-2x}Cu_{2x}SiO₄:

1. для твердофазного синтеза в качестве реактивов использованы оксиды ZnO, SiO₂ и CuO, взятые в стехиометрическом соотношении. Смеси оксидов отжигали при 900, 925, 975 и 1000°C в течение 10 часов на каждой стадии с промежуточным перетиранием в среде этилового спирта. Получены составы $Zn_{2-2x}Cu_{2x}SiO_4$ (x=0; 0,025; 0,050; 0,075; 0,090);

2. для золь-гель синтеза в качестве исходных реактивов использованы $Zn(CH_3COO)_2 \cdot 2H_2O$, $Cu(CH_3COO)_2 \cdot H_2O$ и $Si(C_2H_5O)_4$. На первом этапе дигидрат ацетата цинка, гидрат ацетата меди (II) были переведены в раствор с использованием этилового спирта. На втором этапе происходил гидролиз стехиометрического количества $Si(C_2H_5O)_4$ в течение 30 минут при соотношении H_2O : $T\Theta C = 1 : 1$. На третьем этапе проходил процесс гелеобразования в течение 2 часов при постоянном перемешивании (65°C). Полученный гель был отожжен ступенчато при 200, 450, 600, 700, 800 и 1000°C в течение 30 минут на каждой стадии с промежуточным перетиранием в среде этилового спирта. Получены составы $Zn_{2-2x}Cu_{2x}SiO_4$ (x=0; 0,050; 0,075; 0,100);

3. для сопоставительного анализа особенностей методов «мягкой» химии методом соосаждения получен состав $Zn_{1,9}Cu_{0,1}SiO_4$. В качестве исходных реактивов использованы $Zn(CH_3COO)_2 \cdot 2H_2O$, $Cu(HCOO)_2$ и $Na_2SiO_3 \cdot 9H_2O$. Водные растворы ацетата цинка и формиата меди, взятые в необходимом стехиометрическом соотношении, добавляли в водный раствор метасиликата натрия. Затем, приливая 1 М раствор NaOH, доводили рН до 10 при постоянном перемешивании в течение часа. Образовавшийся осадок отделяли вакуумным фильтрованием и промывали на фильтре дистиллированной водой. Затем высушивали на воздухе при комнатной температуре. Полученный образец отжигали при 600, 700, 800°C в течение 30 минут и при 800°C в течение 10 часов.

Твердофазным синтезом из смеси оксидов ZnO, SiO₂, MgO и Mn₂O₃, взятых в стехиометрическом соотношении, получены образцы номинального состава $Zn_{2-2x}Mn_{2x}SiO_4$ (x=0; 0,01; 0,025; 0,05; 0,10; 0,13; 0,15; 0,18; 0,20; 0,23; 0,25; 0,28; 0,30) и ($Zn_{0.96-x}Mg_{0.04})_2Mn_{2x}SiO_4$ (x=0; 0,02; 0,04; 0,06; 0,10; 0,13; 0,15; 0,20). Смеси оксидов отжигали при 800, 900, 1000, 1100 и 1250°С в течение 10 часов на каждой стадии с промежуточным перетиранием в среде этилового спирта.

Для решения ряда задач были задействованы рентгенофазовый, дифференциально-термический и термогравиметрический анализы, растровая электронная микроскопия, ИК-Фурье спектроскопия, рентгеновская фотоэлектронная спектроскопия, УФ-спектроскопия, фотолюминесцентная спектроскопия.

В третьей главе описан синтез $Zn_{2-2x}Cu_{2x}SiO_4$ твердофазным методом и методами «мягкой» химии. Показано, как условия синтеза влияют на формирование твердого раствора и зарядовое состояния ионов меди в нем. Дана цветовая характеризация составов из области твердого раствора. Показана трансформация цвета в зависимости от температуры отжига и концентрации допанта.

Для определения протяженности твердого раствора $Zn_{2-2x}Cu_{2x}SiO_4$ твердофазным методом были синтезированы составы с содержанием меди x = 0; 0,050; 0,075; 0,090. На рисунке 1 представлены дифрактограммы синтезированных образцов. Для образца с содержанием допанта x = 0,090 фиксируются дифракционные максимумы фазы α -Zn₂SiO₄ и рефлексы, соответствующие оксиду меди (II). Для составов с x = 0; 0,050; 0,075 наблюдается только дифракционная картина фазы α -Zn₂SiO₄. В таблице 1 приведены параметры элементарной ячейки твердого раствора Zn_{2-2x}Cu_{2x}SiO₄ при комнатной температуре.

Понизить температуру и уменьшить время синтеза позволяют методы "мягкой" химии. В настоящем исследовании для проверки возможности пролонгации протяженности твердого раствора были использованы методы синтеза золь-гель и соосаждения.

Рисунок 1 – Дифрактограммы синтезированных образцов твердого раствора $Zn_{2-2x}Cu_{2x}SiO_4$: x = 0 (1); 0,05 (2); 0,075 (3); 0,09 (4)

Для изучения механизма процесса фазообразования были проведены ТГ и ДТА-исследования прекурсономинального ров состава Zn_{1.9}Cu_{0.1}SiO₄, полученных методами золь-гель (рисунок 2а) и соосаждения (рисунок 2б). Потеря массы 2,5 % и 10 % интервале В температур $25 - 150^{\circ}$ С (рисунок 2*a*) связана с испарением этилового спирта, уксусной кислоты и с частичным удалением воды. Экзотермические эффекты на кривых ДТА в области 250 – 410°С обусловлены протекающими процес-

сами сгорания образующихся органических составляющих и кристаллизацией ZnO. При этом на кривых TГ фиксируется потеря массы (~19 %) образцов. При 776°С на кривой ДTA наблюдается экзотермический эффект, обусловленный процессом кристаллизации α-Zn₂SiO₄.

На рисунке 26 потеря массы порядка 14% в интервале температур $100 - 120^{\circ}$ С обусловлена удалением адсорбционной воды и органических продуктов взаимодействия (250 – 450°С), что сопровождается эндо- и экзоэффектом, соответственно. При подъёме температуры выше 600°С наблюдается убыль массы образца на 1,6 %, связанная с потерей молекулярной воды. При температурах 658°С и 755°С на кривой ДТА зафиксированы два четко выраженных экзотермических эффекта. Экзотермический эффект при 658°С соответствует совместной кристаллизации двух структурных модификаций ортосиликата цинка: β -Zn₂SiO₄ и α -Zn₂SiO₄. Второй экзотермический эффект при 755°С на кривой нагревания сопровождает фазовое превращение β -Zn₂SiO₄ в α -Zn₂SiO₄.

Таблица 1 – Параметры элементарной ячейки твердого раствора Zn_{2-2x}Cu_{2x}SiO₄

Рисунок 2 – Кривые ДТА и ТГ прекурсора Zn_{1,9}Cu_{0,1}SiO₄, полученного методами золь-гель (*a*) и соосаждения (б)

Для идентификации фаз, образующихся при термоактивации прекурсоров зольгель и соосаждения, были сняты дифрактограммы образцов, отожженных при различных температурах (рисунок 3). На дифрактограмме образца, полученного методом соосаждения (рисунок 3*a*), после термообработки при 600°С присутствуют широкие максимумы, относящиеся к β - и α - модификациям структуры ортосиликата цинка. Дифрактограмма образца, отожженного при 700°С, содержит узкие рефлексы структуры виллемита и более широкие рефлексы метастабильной β -модификации. Последующий нагрев приводит к структурному переходу β -фазы в стабильную α -модификацию. После отжига при 800°С в течение 10 часов на дифрактограмме присутствуют максимумы,

Рисунок 3 – Дифрактограммы образца Zn_{1,9}Cu_{0,1}SiO₄, полученного методами соосаждения (*a*) и золь-гель (*б*) при различных температурах отжига

соответствующие фазе α -Zn₂SiO₄. При золь-гель синтезе Zn_{1,9}Cu_{0,1}SiO₄ (рисунок 3 δ), на дифрактограммах образца после отжига при 600°С и 700°С фиксируются дифракционные максимумы оксида цинка. Вторичная термическая обработка при 800°С в течение 10 часов привела к получению однофазного образца Zn_{1,9}Cu_{0,1}SiO₄.

Рисунок 4 – ИК-спектры ооразца Zn_{1,9}Cu_{0,1}SiO₄ при различных температурах отжига

Процесс формирования полиэдрических составляющих кристаллической структуры при термической обработке аморфного прекурсора – геля прослежен путем анализа ИК –спектров на примере образца номинального состава Zn1.9Cu0.1SiO4 (рисунок 4). При 65 и 200°С наблюдаются полосы поглощения Si-O-Si при 1014-1051 см⁻¹ (деформационные колебания), Si-O при 680-684 см⁻¹ (деформационные колебания) и для карбоксильной группы СОО- при 1550-1557 см⁻¹ и 1418 см⁻¹ (асимметричные и симметричные колебания). Совместное присутствие мод деформационных колебаний Si-O-Si и Si-OH (924-941 см⁻¹) свидетельствуют о полимеризации частиц Si-OH, приводящей к формированию трехмерной полимерной сетки ≡Si-O-Si≡. Постепенное исчезновение мод Si-OH и COO- с ростом температуры свидетельствует об удалении органических компонентов золь-гель синтеза. Колебания групп Si-O-Si при 1049-1051 см⁻¹ и Si-О при 685см⁻¹ исчезают при температурах выше 700°С, что связано с разрушением полимерной сетки =Si-

O-Si≡. При 800°С частота 457 см⁻¹ относится к асимметричным деформационным колебаниям тетраэдров [SiO₄]⁴⁻. На ИК-спектрах при 800°С с выдержкой 30 минут и 1 час появляются полосы 895, 930, 976 см⁻¹ и 860 см⁻¹, принадлежащие ассиметричным и симметричным валентным колебаниям тетраэдров [SiO₄]⁴⁻. Частоты колебаний при 612 см⁻¹ и 571 см⁻¹ принадлежат асимметричным и симметричным валентным колебаниям тетраэдров [SiO₄]⁴⁻. Частоты колебаний при 612 см⁻¹ и 571 см⁻¹ принадлежат асимметричным и симметричным валентным колебаниям тетраэдров [ZnO₄]⁶⁻. Полученные спектроскопические данные свидетельствуют о завершении процесса формирования полиэдрических составляющих структуры виллемита – тетраэдров [SiO₄]⁴⁻ и [ZnO₄]⁶⁻ при 800°С, в которых координационные числа кремния и цинка равны 4.

Для уточнения предела изоморфной емкости структуры виллемита при введении ионов меди были получены образцы номинального состава $Zn_{2-2x}Cu_{2x}SiO_4$ (x = 0,075; 0,100) золь-гель методом (рисунок 5). Рентгенофазовый анализ показал, что образец при x = 0,075 однофазен (рисунок 5*a*). На дифрактограмме при x = 0,100 наряду с фазой виллемита присутствуют рефлексы примесных фаз CuO и SiO₂ (рисунок 5*b*). Установлено, что протяженность твердого раствора $Zn_{2-2x}Cu_{2x}SiO_4$ совпадает с установленной при твердофазном синтезе и составляет 7,5 мол.% меди.

На рисунке 6 представлены температурные зависимости параметров элементарных ячеек Zn₂SiO₄, Zn_{1,9}Cu_{0,1}SiO₄ и Zn_{1,85}Cu_{0,15}SiO₄ *in situ* в интервале температур от 25°C до 800°C. При нагревании кристаллическая решетка ортосиликата цинка монотонно расширяется с преобладанием вдоль оси *c*. Кристаллическая решетка твердого раствора Zn_{2-2x}Cu_{2x}SiO₄ является немного более подвижной по сравнению с решеткой Zn₂SiO₄, что подтверждается незначительными изменениями линейных и объемных коэффициентов термического расширения (таблица 2). Визуальное сопоставление окраски однофазных образцов Zn_{1,85}Cu_{0,15}SiO₄, полученных твердофазным и золь-гель методами, выявило их цветовое отличие (рисунок 7). Образец, синтезированный твердофазным методом при 1000°С, обладает серо-фиолетовым цветом, образец, полученный золь-гель методом при температуре 800°С, окрашен в синий цвет. Дополнительный отжиг золь-гель образца при 1000°С привел к изменению окраски с синей на фиолетовую. Вероятно, что цветовые трансформации образцов связаны с изменением зарядового состояния ионов меди, которое может быть установлено путем анализа спектров поглощения. На рисунке 8 показаны спектры поглощения образцов Zn_{1,85}Cu_{0,15}SiO₄, полученных твердофазным и золь-гель методами при различной температуре обработки. На спектре образца, полученного золь-гель методом при 800°С, присутствуют полосы поглощения при 426 и 778 нм, относящиеся к переходам ${}^2B_{1g} \rightarrow {}^2E_{g}$ и ${}^2B_{1g} \rightarrow {}^2B_{2g}$, которые свидетельствуют о наличии в структуре виллемита ионов Cu²⁺. На спектре поглощения образцов, полученных твердофазным методом и золь-гель после отжига при 1000°С, наряду с полосами, относящимися к Cu²⁺, появляются дополнительные полосы поглощения ~550 и 623 нм, соответствующие Cu⁺.

Рисунок 5 – Спектры рентгеновской дифракции образцов $Zn_{1,85}Cu_{0,15}SiO_4(a)$ и $Zn_{1,80}Cu_{0,20}SiO_4(\delta)$, синтезированных золь-гель методом

Таблица 2 – Коэффициенты линейного и объемного термического расширения (α_a, α_c, α_V) α-Zn₂SiO₄ и твердого раствора Zn_{2-2x}Cu_{2x}SiO₄

Состав	Zn ₂ SiO ₄	Zn _{1,9} Cu _{0,1} SiO ₄	Zn _{1,85} Cu _{0,15} SiO ₄
α _a , ·10 ⁻⁶ 1/град	2,29	2,44	2,40
α _c , ·10 ⁻⁶ 1/град	3,47	3,95	3,88
α _V , ·10 ⁻⁶ 1/град	8,05	8,81	8,65

Рисунок 7 – Цветовая окраска твердого раствора $Zn_{2\text{-}2x}Cu_{2x}SiO_4$

Рисунок 8 – Спектры поглощения образца Zn_{1,85}Cu_{0,15}SiO₄ (*a*), полученного твердофазным методом при 1000°С (*1*) и золь-гель методом при 800°С (*2*), 1000°С (*3*)

Формирование дополнительных полос на спектрах поглощения объясняет визуальные наблюдения: причиной фиолетовой окраски образцов, полученных твердофазным и золь-гель методами при 1000°С является уширение области поглощения видимой части спектра за счет изменения степени окисления части ионов меди с +2 на +1. Следует отметить, что в этом процессе происходит трансформация твердого раствора замещения $Zn_{2-2x}Cu_{2x}SiO_4$ в твердый раствор замещения-вычитания $Zn_{2-2x}Cu^{2+}_{2x-2\delta}Cu^{+}_{2\delta}SiO_{4-\delta}$.

В четвертой главе рассмотрены синтез, кристаллохимические и оптические свойства твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$ и ($Zn_{0,96-x}Mg_{0,04}$)₂ $Mn_{2x}SiO_4$. Определены доминирующие факторы, влияющие на интенсивность люминесценции твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$ и ($Zn_{0,96-x}Mg_{0,04}$)₂ $Mn_{2x}SiO_4$, а также способы их регулирования.

9 Ha рисунке представлены дифракобразца тограммы $Zn_{1,74}Mn_{0,26}SiO_4$ при ступенчатом нагреве и изохронной выдержке исходной реакционной смеси оксилов ZnO. Мп₂O₃ и SiO₂. Рентгенофазовый анализ показал, что после отжига при 800°С в образце присутствуют фазы со структурами вюрцита ZnO шпинели И ZnMn₂O₄. При 900°С в реакцию вступает ранее неактивный оксид кремния, и на дифрактограмме отожженного образца появляются сигналы фазы со структурой виллемита.

Поскольку интенсивность рефлексов фазы виллемита мала, то определить вхождение ионов марганца методом РФА при образовании твердого раствора замещения Zn_{2-2x}Mn_{2x}SiO₄ за счет сдвига дифракционных максимумов невозможно. Однако марганец в структуре виллемита можно обнаружить с помощью люминесцентного анализа.

Рисунок 10 – Спектры люминесценции ($\lambda_{ex} = 262$ нм) смеси ZnO, Mn₂O₃ и SiO₂ при температурах отжига: 900 (1), 1000 (2) и 1100°С (3)

свидетельствует об увеличении количество ионов Mn²⁺ в структуре виллемита.

Рисунок 11 – Кривые ДТА и ТГ смеси ZnMn₂O₄ и SiO₂

На рисунке 10 приведены спектры люминесценции смеси ZnO, Mn₂O₃ и SiO₂ после изохронных отжигов при разных температурах. Для образца, отожженного при 900°С, люминесценция при 525 нм, характерная для ионов марганца Mn²⁺ в структуре виллемита, отсутствует. Этим показано, что при данной температуре формируется недопированный силикат цинка Zn₂SiO₄, а весь марганец находится в структуре гете- $ZnMn_2O_4$. Для ролита образца, отожженного при 1000°С, наблюдается люминесценция с максимумом около 525 нм. С увеличением температуры отжига до 1100°С интенсивность люминесценции возрастает, что

Рентгенофазовый анализ показал, что при этих температурах регистрируется ряд дифракционных максимумов очень низкой интенсивности, однозначная идентификация которых невозможна. Предполагая, что неизвестная фаза является продуктом взаимодействия гетеролита и оксида кремния с целью идентификации фаз проведен термический анализ их модельной смеси в соотношении (1:1) в кинетическом режиме (рисунок 11). При температурах выше 1000°C наблюдается убыль массы образца, которая при 1180°С резко интенси-

фицируется и сопровождается эндотермическим эффектом. Убыль массы свидетельствует об изменении зарядового состояния $Mn^{3+} \rightarrow Mn^{2+}$, что может быть связано с образованием силикатов $MnSiO_3$, Mn_2SiO_4 и $Zn_{2-2x}Mn_{2x}SiO_4$.

Для определения фазового состава продуктов взаимодействия гетеролита и оксида кремния модельную смесь отожгли при температуре 1180°C в течение 30 минут. На рисунке 12 приведена дифрактограмма продуктов взаимодействия. Ими являются фазы со структурами высокотемпературной модификации родонита MnSiO₃ и виллемита Zn₂SiO₄. Присутствие фазы родонита также подтверждается совпадением температуры эндоэффекта на кривой ДТА с температурой фазового перехода в MnSiO₃, который ускоряет это взаимодействие (эффект Хедвала). Финальный отжиг при 1250°C приводит к получению однофазного люминофора Zn_{1,74}Mn_{0,26}SiO₄, где весь марганец находится в состоянии Mn²⁺ (рисунок 9).

30 минут

На рисунке 13 представлена концентрационная зависимость параметров кристаллической решетки твердого раствора Zn_{2-2x}Mn_{2x}SiO₄. Параметры линейно возрастают с ростом концентрации марганца до x = 0,13.Размеры элементарной ячейки твердого раствора замещения изменяются в соответствии с размером и концентрацией замеща- $(r(Mn^{2+}) = 0.80 \text{ Å},$ юшего иона $r(Zn^{2+}) = 0,74$ Å).

При x > 0,13 наблюдается перегиб на концентрационной зависимости параметров кристаллической решетки твердого раствора Zn_{2-2x}Mn_{2x}SiO₄, что связано с изменением механизма образования уй раствор Zne с Mn^{2+} с Mn^{3+} сSiO₄

твердого раствора. При x > 0,13 образуется твердый раствор $Zn_{2-2x-\delta}Mn^{2+}_{2x-2\delta}Mn^{3+}_{2\delta}SiO_4$ замещения-вычитания [3], в котором наряду с ионами Mn^{2+} присутствуют ионы Mn^{3+} .

Рисунок 13 — Концентрационная зависимость параметров кристаллической решетки твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4(1)$ и $(Zn_{0.96-x}Mg_{0.04})_2Mn_{2x}SiO_4(2)$

Смена механизма дефектообразования обусловлена соотношением размеров катионов матрицы и замещающего его допанта. За счет разницы в размерах ионов цинка и марганца ($r(\text{Zn}^{2+}) = 0,74$ Å, $r(\text{Mn}^{2+}) = 0,80$ Å) при увеличении концентрации марганца нарастают деформационные искажения кристаллической решетки. При x = 0,13 достигается их критическое значение. При последующем увеличении x деформации решетки уменьшаются за счет окисления части ионов Mn²⁺ до Mn³⁺ с меньшим ионным радиусом ($r_i(\text{Mn}^{3+}) = 0,72$ Å).

Поскольку при увеличении *x* деформации решетки $Zn_{2-2x}Mn^{2+}_{2x}SiO_4$ уменьшаются за счет окисления части ионов-активаторов Mn^{2+} до Mn^{3+} с меньшим ионным радиусом, замещение части ионов цинка в структуре Zn_2SiO_4 ионами магния ($r(Mg^{2+}) = 0,71$ Å), позволит ввести в структуру большее количество ионов Mn^{2+} .

Также на рисунке 13 представлена концентрационная зависимость параметров элементарной ячейки твердого раствора

 $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$ в сравнении с $Zn_{2-2x}Mn_{2x}SiO_4$. Темпы роста линейных параметров и объемов элементарных ячеек с увеличением содержания марганца в области твердых растворов замещения близки. Замещение части ионов цинка 4 мол.% магния в $Zn_{2-2x}Mn_{2x}SiO_4$ понижает параметр *a* и объем элементарной ячейки *V*, параметр *c* при любых одинаковых концентрациях марганца совпадает. При замещении ионов цинка на большие ионы марганца металл-кислородные тетраэдры увеличиваются в размерах, что

влечет за собой рост всех кристаллохимических параметров. При замещении в этом твердом растворе части ионов цинка на магний происходит уменьшение диаметра шестичленного кольца в плоскости (a_1a_2) (рисунок 14). Параметр *с* при этом определяется размерами тех тетраэдров, в которых ионы цинка замещены ионами марганца. Поэтому параметр *с* при одинаковых концентрациях марганца в ($Zn_{0,96-x}Mg_{0,04}$)₂ $Mn_{2x}SiO_4$ и $Zn_{2-2x}Mn_{2x}SiO_4$ совпадает.

Для определения зарядового состояния ионов марганца были получены спектры поглощения образцов $Zn_{1,74}Mn_{0,26}SiO_4$, $(Zn_{0,76}Mg_{0,04})_2Mn_{0,40}SiO_4$ и $Zn_{1,60}Mn_{0,40}SiO_4$ (рисунок 15). В качестве эталонов сравнения выбраны образцы $Zn_{1,74}Mn_{0,26}SiO_4$ и $Zn_{1,60}Mn_{0,40}SiO_4$, содержащие только ионы Mn^{2+} и смесь ионов Mn^{2+} и Mn^{3+} в структуре виллемита, соответственно. Поглощение с максимумом при 355 нм соответствует пере-

ходу ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E_{1}({}^{4}D)$, ~ 380 нм - $A_1({}^6S) \rightarrow {}^4T_2({}^4D), \ 421 \text{ HM } -A_1({}^6S) \rightarrow {}^4E_1({}^4G),$ 435 HM $-A_1({}^6S) \rightarrow {}^4T_2({}^4G), \sim 480$ HM - $A_1(^6S) \rightarrow {}^4T_1(^4G)$ [4]. Все полосы поглощения образцов принадлежат d-d переходам ионам Mn^{2+} (координационное число = 4), образующихся при расщеплении уровней ${}^{4}D$ и ${}^{4}G$. Помимо перечисленных полос на кривой 2 присутствует полоса поглощения вблизи 570 нм, указывающая на присут-Mn³⁺ ствие ионов В образце Zn_{1,60}Mn_{0,40}SiO₄. Отсутствие этого сигнала на кривой 3 свидетельствует об отсутствии Mn³⁺ в образце (Zn_{0.76}Mg_{0.04})₂Mn_{0.40}SiO₄. Полученные данные также были подтверждены методом вольтамперометрии [3, 5].

Спектры люминесценции однофазных образцов протяженного твердого раствора Zn_{2-2x}Mn_{2x}SiO₄, измеренные под действием возбуждающего излучения с длиной волны 260 нм, представлены на рисунке 16. На всех спектрах наблюдается интенсивный пик при ~528 нм, который принадлежит переходу ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ иона Mn²⁺. Интенсивность люминесценции растет с ростом содержания марганца до x = 0,13 (рисунок 16*a*). При замещении ионов цинка большими по размеру ионами марганца возрастают анизотропные концентрационные деформации матричной кристаллической решетки. При этом существенно деформируются и катионные полиэдры. Эти деформации усиливаются с ростом концентрации допанта, локальная симметрия полиэдров [MnO₄]⁶⁻ понижается, что, в свою очередь, способствует снятию вырождения *d*-уровней и росту вероятности излучательного перехода за счет прогрессирующей асимметрии тетраэдрического поля лигандов.

Рисунок 16 – Спектры люминесценции (λ_{ex} = 260 нм) твердого раствора Zn_{2-2x}Mn_{2x}SiO₄: возрастание (*a*) и уменьшение (*б*) интенсивности люминесценции

При больших значениях *х* наблюдается тушение люминесценции (рисунок 16*б*). Концентрационная область тушения люминесценции совпадает с областью существования твердого раствора замещения-вычитания $Zn_{2-2x-\delta}Mn^{2+}_{2x-2\delta}Mn^{3+}_{2\delta}SiO_4$. Следовательно, падение интенсивности свечения связано с уменьшением числа оптически активных ионов Mn^{2+} . Кроме того, происходит диссипация части энергии возбуждения на нерегулярностях кристаллической решетки, обусловленных появлением вакансий в цинковой подсистеме.

Спектры люминесценции (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄ приведены на рисунке 17. Спектры эмиссии содержат, также как и для Zn_{2-2x}Mn_{2x}SiO₄ интенсивную полосу в области ~528 нм, связанную с переходом ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ в ионах Mn²⁺. Интенсивность излучения твердого раствора (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄ возрастает с ростом *x* до 0,06, при дальнейшем росте содержания марганца происходит падение интенсивности люминесценции (рисунок 17). Следует отметить, что уменьшение интенсивности люминесценции (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄ не связано с окислением ионов-активаторов Mn²⁺ на всей протяженности твердого раствора. Причиной этого может быть взаимодействие Mn²⁺ – Mn²⁺, поскольку добавление магния привело к уменьшению параметра *a* кристаллической решетки по сравнению с Zn_{2-2x}Mn_{2x}SiO₄, а, следовательно, и к уменьшению расстояния между ионами марганца. Эта версия подтверждается результатами электрохимического исследования образцов (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄, показавшими кластеризацию ионов Mn²⁺ при *x* ≥ 0,13 [5].

Все полученные спектры люминесценции твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$ и $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$ несимметричны (рисунки 16, 17). В качестве примера на рисунке 17б представлен экспериментальный спектр $(Zn_{0,94}Mg_{0,04})_2Mn_{0,04}SiO_4$. Несимметричность эмиссионных пиков, как показано и для $Zn_{2-2x}Mn_{2x}SiO_4$, свидетельствует об их неэлементарности. Неэлементарность люминесцентных пиков связана с особенностями структуры виллемита и определяется тем, что катионы Zn^{2+} занимают

две неэквивалентные кристаллографические позиции Zn1 и Zn2 (рисунок 14). Такие максимумы складываются из сигналов от нескольких ионов-активаторов и могут быть описаны суперпозицией соответствующих гауссиан (рисунок 17 δ).

Рисунок 17 – Спектры люминесценции ($\lambda_{ex} = 260$ нм) твердого раствора ($Zn_{0.96-x}Mg_{0.04}$)₂ $Mn_{2x}SiO_4(a)$ и образца ($Zn_{0.94}Mg_{0.04}$)₂ $Mn_{0.04}SiO_4(b)$

Сопоставление концентрационных зависимостей интенсивности люминесценции твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$ и ($Zn_{0,96-x}Mg_{0,04}$)₂ $Mn_{2x}SiO_4$ (рисунке 18) показывает, что введение ионов магния в катионную подрешетку марганец-замещенного виллемита приводит к смещению максимума интенсивности люминесценции в область меньших значений *x*, и максимальная интенсивность достигается при различной концентрации иона-активатора. Согласно полученным данным, интенсивность свечения ($Zn_{0,96-x}Mg_{0,04}$)₂ $Mn_{2x}SiO_4$ выше при $x \le 0,06$, чем для твердого раствора $Zn_{2-2x}Mn_{2x}SiO_4$ при одинаковых концентрациях ионов Mn^{2+} .

Рисунок 18 – Концентрационные зависимости интенсивности люминесценции твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$ (1) и ($Zn_{0,96-x}Mg_{0,04}$)₂ $Mn_{2x}SiO_4$ (2), $\lambda_{ex} = 260$ нм

Увеличение интенсивности люминесценции может происходить за счет ослабления электрон-фононного взаимодействия. Уменьшение потерь излучательной энергии связано с особенностями формирования структуры содопированного твердого раствора. На рисунке 19 приведена гипотетическая схема формирования структуры твёрдых растворов (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄ и Zn_{2-2x}Mn_{2x}SiO₄. При замещении цинка большим по размеру ионом Mn²⁺ формируется протяженная область искажений кристаллической решетки (рисунок 19б). Введение содопанта Mg²⁺ с меньшим, чем у цинка, радиусом может способствовать сокращению области деформаций регулярной структуры виллемита (рисунок 19в), тем

самым уменьшая потери на безызлучательные переходы и увеличивая интенсивность люминесценции.

Уменьшение потерь энергии излучения находит свое подтверждение в результатах измерения времени затухания исследуемых люминофоров $Zn_{2-2x}Mn_{2x}SiO_4$ и $(Zn_{0.96-x}Mg_{0.04})_2Mn_{2x}SiO_4$ для составов с x = 0,06 при возбуждении излучением с длиной волны 260 нм. Введение содопанта-магния приводит к увеличению среднего времени

затухания, что подтверждает предположение о том, что уменьшение потерь энергии излучения возможно связано с нивелированием деформаций кристаллической решетки образца $(Zn_{0,9}Mg_{0,04})_2Mn_{0,12}SiO_4$ по сравнению со средним временем затухания образца $Zn_{1,88}Mn_{0,12}SiO_4$. Таким образом, одной из причин усиления свечения содопированного магнием кристаллофосфора Zn_2SiO_4 : Mn^{2+} может быть уменьшение диссипации энергии возбуждения за счет уменьшения локальных областей искажения кристаллической структуры.

Рисунок 19 – Схема локальных искажений структуры $Zn_2SiO_4(a)$ и твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4(b)$ и ($Zn_{0.96-x}Mg_{0.04}$)₂ $Mn_{2x}SiO_4(b)$

Замечено, что максимум люминесценции для всех исследованных образцов наблюдается не только при длине волны зеленого свечения ~ 528 нм, но и при длине волны около 445 нм меньшей интенсивности (рисунок 20). Наличие люминесценции на этой длине волны указывает на частичное снятие запретов на излучательный переход ${}^{4}T_{2}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$. На рисунке 20*а* представлены спектры люминесценции образцов твердого раствора $Zn_{2-2x}Mn_{2x}SiO_4$ (*x* = 0.025; 0.050; 0.130) при возбуждении излучением с длиной волны 260 нм. При увеличении концентрации марганца в этих образцах твердого раствора Zn_{2-2x}Mn_{2x}SiO₄ интенсивность люминесценции неосновного перехода ${}^{4}T_{2}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ возрастает, что должно было бы уменьшить интенсивности люминесценции основного перехода зеленого излучения ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$. Однако этого не происходит по причине увеличения концентрации оптически активных ионов Mn²⁺. Введение содопанта-магния снижает эффективность синего свечения ${}^{4}T_{2}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ (рисунок 20б). Это означает, что интенсивность люминесценции основного перехода ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ должна возрасти. Действительно, согласно полученным данным, интенсивность зеленого свечения содопированного образца Zn_2SiO_4 : Mn^{2+},Mg^{2+} превышает таковую для Zn_2SiO_4 : Mn^{2+} при x < 0,06 (рисунок 18). Таким образом, для твердого раствора (Zn_{0.96-x}Mg_{0.04})₂Mn_{2x}SiO₄ при увеличении концентрации марганца рост интенсивности люминесценции основного перехода ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ происходит благодаря снижению потерь эффективных носителей заряда, участвующих в излучательной рекомбинации неосновного перехода синего свечения ${}^{4}T_{2}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$. При введении оптически неактивного содопанта-магния возможными доминирующими факторами увеличения интенсивности люминесценции основного перехода ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ являются усиление запрета для неосновного перехода ${}^{4}T_{2}({}^{\bar{4}}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ и уменьшение диссипации энергии возбуждения за счет уменьшения локальных областей искажения кристаллической структуры.

Рисунок 20 – Спектры люминесценции твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4(a)$ и $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4(b)$, $\lambda_{ex} = 260$ нм

На рисунке 21 представлена концентрационная зависимость максимумов энергии фотонов центров свечения в позициях Mn/Zn1 и Mn/Zn2 для твердых растворов Zn_{2-2x}Mn_{2x}SiO₄ и (Zn_{0.96-x}Mg_{0.04})₂Mn_{2x}SiO₄. Для всех образцов с ростом количества x ионов-активаторов Mn²⁺ максимумы каждого из элементарных пиков смещаются в область меньших энергий. Для ионов Mn²⁺ в позиции Zn1 красный сдвиг значительно меньше, чем для гауссианы, соответствующей Mn/Zn2. Разница энергий эмиссии основного разрешенного перехода ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ для каждого из составов твердых растворов определяет диапазон цвета свечения. Наибольший вклад в интенсивность люминесценции дает ион Mn²⁺, занимающий позицию Zn1 (рисунок 21). При увеличении концентрации марганца в обеих сериях твердых растворов увеличивается разница в энергии высвечивания Mn/Zn1 и Mn/Zn2, что вызывает красный сдвиг (от 524 до 530 нм), при этом результирующий максимум люминесценции сдвигается в желтозеленую область видимого излучения (рисунок 22).

Рисунок 21 – Концентрационная зависимость максимумов энергии фотонов центров свечения *Mn/Zn1* и *Mn/Zn2* твердых растворов Zn_{2-2x}Mn_{2x}SiO₄ (квадраты) и (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄ (треугольники)

ЗАКЛЮЧЕНИЕ

Настоящая работа сфокусирована на особенностях структурно-химического механизма формирования регулярной и дефектной структуры трех серий твердых растворов на основе виллемита: Zn_{2-2x}Mn_{2x}SiO₄, (Zn_{0.96-x}Mg_{0.04})₂Mn_{2x}SiO₄ и Zn_{2-2x}Cu_{2x}SiO₄, их кристаллохимических и оптических свойствах. Результаты исследования и интерпретация рентгенографии, термогравиметрического данных И дифференциальнотермического анализа позволили установить изоморфную емкость твердых растворов, особенности синтеза и последовательность фазообразования финальных целевых составов. Комплексом взаимодополняющих дифракционных, спектроскопических и термоаналитических методов показано, как процессы дефектообразования, изменения зарядового состояния ионов-допантов и деформационные искажения матричной структуры виллемита формируют концентрационные зависимости параметров кристаллической структуры, цветовые характеристики Zn_{2-2x}Cu_{2x}SiO₄ и спектры люминесценции Zn_{2-2x}Mn_{2x}SiO₄ и (Zn_{0.96-x}Mg_{0.04})₂Mn_{2x}SiO₄. Установлено, что процесс дефектообразования в изучаемых твердых растворах существенно различен. Так, для Zn_{2-2x}Cu_{2x}SiO₄ он определен выходом кислорода в газовую фазу и восстановлением ионов меди при повышении температуры отжига для всех образцов из области твердого раствора. Для Zn_{2-2x}Mn_{2x}SiO₄ - окислением части ионов марганца при больших концентрациях допанта и образованием вакансий в цинковой подрешетке. Существенно, что пролонгирование изоморфной емкости этого твердого раствора обеспечено уменьшением размера окисленных ионов марганца. Протяженность твердого раствора замещения $(Zn_{0.96-x}Mg_{0.04})_2Mn_{2x}SiO_4$ увеличена по сравнению с $Zn_{2-2x}Mn_{2x}SiO_4$, а процесс окисления марганца предотвращен путем введения магния. В работе обоснованы возможности практического использования полученных результатов, поскольку цветометрические характеристики Zn_{2-2x}Cu_{2x}SiO₄ дополняют имеющуюся синюю цветовую гамму силикатов с участием ионов-хромофоров, а интенсивность и длина волны люминесценции ряда составов из областей твердых растворов Zn_{2-2x}Mn_{2x}SiO₄ и (Zn_{0.96-x}Mg_{0.04})₂Mn_{2x}SiO₄ могут регулироваться концентрацией вводимых допантов – марганца и магния.

По результатам работы сделаны следующие выводы:

1. проведено систематическое комплексное изучение трех серий твердых растворов Zn_{2-2x}Mn_{2x}SiO₄, (Zn_{0,96-x}Mg_{0,04})₂Mn_{2x}SiO₄ и Zn_{2-2x}Cu_{2x}SiO₄ со структурой виллемита, позволившее установить структурно-химический механизм формирования их кристаллохимических и оптических свойств;

2. впервые получены протяженные твердые растворы $Zn_{2-2x}Mn_{2x}SiO_4$ ($x \le 0,20$), $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$ ($x \le 0,20$) и $Zn_{2-2x}Cu_{2x}SiO_4$ ($x \le 0,075$) со структурой виллемита. Показано, что концентрационные зависимости параметров элементарных ячеек $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$ и $Zn_{2-2x}Cu_{2x}SiO_4$ линейны, отклонение от закона Вегарда параметров $Zn_{2-2x}Mn_{2x}SiO_4$ в интервале $0,13 \le x \le 0,20$ обусловлены уменьшением размера иона-заместителя за счет его частичного окисления $Mn^{2+} \rightarrow Mn^{3+}$;

3. впервые проведено детальное исследование последовательности фазообразования и локализации ионов марганца в промежуточных и финальном продуктах синтеза $Zn_{2-2x}Mn_{2x}SiO_4$. Показано, что при термической активации исходной смеси ZnO, SiO₂ и Mn_2O_3 на начальном этапе происходит синтез промежуточных продуктов $ZnMn_{3^+}^{3+}O_4$ и $Mn^{2+}SiO_3$, в которых ионы марганца находятся в оптически неактивном состоянии. Обнаружено уникальное явление – появление промежуточного продукта Zn_2SiO_4 , который не содержит ионы марганца;

4. установлено, что процесс дефектообразования в $Zn_{2-2x}Cu_{2x}SiO_4$ определен выходом кислорода в газовую фазу и восстановлением ионов меди $Cu^{2+} \rightarrow Cu^+$ при повышении температуры, для $Zn_{2-2x}Mn_{2x}SiO_4$ – окислением части ионов марганца $Mn^{2+} \rightarrow Mn^{3+}$;

5. исследованы спектрально-люминесцентные свойства твердых растворов $Zn_{2-2x}Mn_{2x}SiO_4$ и $(Zn_{0,96-x}Mg_{0,04})_2Mn_{2x}SiO_4$. Впервые показано, что введение в Zn_2SiO_4 : Mn^{2+} оптически неактивного иона Mg^{2+} является эффективным способом увеличения интенсивности люминесценции за счет уменьшения стоксовых потерь;

6. показано, что локация оптически активных ионов марганца в двух структурнонеэквивалентных позициях определяет неэлементарную форму спектров излучения, которая описывается суперпозицией двух гауссиан, соответствующих полосам излучения ионов Mn/Zn1 и Mn/Zn2. Установлено смещение максимумов излучения основного перехода ${}^{4}T_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ в сторону больших длин волн с ростом концентрации марганца, что позволяет варьировать цвет излучения люминофора.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

1. Takesue, M. Thermal and chemical methods for producing zincsilicate (willemite): A review / M. Takesue, H. Hayashi, R. L. Smith // Progress in Crystal Growth and Characterization of Materials. – 2009. – V. 55. – P. 98–123.

2. Klaska, K. New investigation of willemite / K. Klaska, J. Eck, D. Pohl // Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. – 1978. – V. 34. –№ 332. – P. 4–5.

3. Crystallochemical and voltammetric characterization of the $Zn_{2-2x}Mn_{2x}SiO_4$ luminophor / T. A. Onufrieva, L. Yu Buldakova, M. Yu Yanchenko, N.A. Zaitseva, T.I. Krasnenko // Russian Journal of Physical Chemistry A. – 2018. – V. 92. – P. 1413–1416.

4. Ghoul, J. El. Synthesis and characterization of Mn^{+2} -doped zinc silicate as potential green nanophosphor materials / J. El Ghoul, N. A. All // Indian Journal of Physics. – 2020. – V. 94. – P. 1343–1350.

5. Voltammetric determination of the nature of the concentration quenching of luminescence $Zn_{2-2y}Mg_{2y}SiO_4:Mn / N$. A. Zaitseva, M. Yu Yanchenko, L. Yu Buldakova et al. // Russian Journal of Physical Chemistry A. –2019. – V. 93. – P. 976-979.

ОСНОВНЫЕ ПУБЛИКАЦИИ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

1. Sol-gel synthesis and crystal chemical properties of the pigment $Zn_{1.9}Cu_{0.1}SiO_4$ / R. F. Samigullina, M. V. Rotermel, **I. V. Ivanova**, T. I. Krasnenko // Chimica Techno Acta. - 2018. - V. 5. - P. 86-91.

2. Анализ причин концентрационного тушения люминесценции в кристаллофосфорах Zn₂SiO₄: Mn / T. A. Онуфриева, Т. А. Красненко, Н. А. Зайцева, И. В. Бакланова, М. В. Ротермель, **И. В. Иванова**, И. Д. Попов, Р. Ф. Самигуллина // Физика твердого тела. – 2019. – Т. 61, № 5. – С. 908–911.

3. Синтез, кристаллохимические и термические свойства твердого раствора Zn_{2-2x}Cu_{2x}SiO₄ со структурой виллемита / Н. А. Зайцева, **И. В. Иванова**, Р. Ф. Самигуллина, М. В. Ротермель, Т. И. Красненко // Журнал неорганической химии. – 2019. – Т. 64, № 1. – С. 3–8.

4. The effect of Mg introduction on structural and luminescence properties of Zn_2SiO_4 : Mn phosphor / T. I. Krasnenko, N. A. Zaitseva, **I. V. Ivanova**, I. V. Baklanova, R. F. Samigullina, M. V. Rotermel // Journal of Alloys and Compounds. – 2020. – V. 845. – P. 156296.

5. Synthesis of the $Zn_{1.9}Cu_{0.1}SiO_4$ pigment via the sol-gel and coprecipitation methods / M. V. Rotermel, R. F. Samigullina, **I. V. Ivanova**, E. V. Vladimirova, I. V. Baklanova, T. I. Krasnenko // Journal of Sol-Gel Science and Technology. – 2021. – V. 100. – P. 404–413.

6. Distinctive features of the crystal-chemical, thermal and luminescence properties of $(Zn_{0.94}Mg_{0.06})_2SiO_4$:Mn phosphor / T. I. Krasnenko, R. F. Samigullina, N. A. Zaitseva,

I. V. Ivanova, St. V. Pryanichnikov, M. V. Rotermel // Journal of Alloys and Compounds. – 2022. – V. 907. – P. 164433.

7. Solid-state synthesis of the Zn_2SiO_4 :Mn phosphor: sequence of phase formation, localization and charge state of Mn ions in the intermediate and final reaction products / R. F. Samigullina, **I. V. Ivanova**, N. A. Zaitseva T. I. Krasnenko // Optical Materials. – 2022. – V. 132. – P. 112788.

8. Solid-state synthesis of $ZnMn_2O_4$ spinel: Sequence of phase transformations, thermal stability, localization and charge state of manganese ions in the intermediate and final reaction products / **I. V. Ivanova**, N. A. Zaitseva, R. F. Samigullina, T. I. Krasnenko // Solid State Science. – 2023. – V. 136. – P. 107110.

9. Пат. №2683432 Российская Федерация, МПК С 04 В 35/16 С 04 В 35/453. Способ получения диэлектрического материала на основе силиката цинка / И.В. Иванова, Т.И. Красненко, Р.Ф. Самигуллина, Н.А. Зайцева, Т.А. Онуфриева; заявитель и патентообладатель Институт химии твердого тела Уральского отделения Российской академии наук (RU). – №2018109717; заявл. 20.03.18; опубл.28.03.2019, Бюл. № 10. – 6 с.

10. Пат. №2727633 Российская Федерация, МПК С 09 К 11/54. Силикат цинка, содопированный марганцем и магнием, и способ его получения / Т.И. Красненко, М.В. Ротермель, Р.Ф. Самигуллина, Н.А. Зайцева, **И.В. Иванова**, И.В. Бакланова; заявитель и патентообладатель Институт химии твердого тела Уральского отделения Российской академии наук (RU). – №2020107384; заявл. 19.02.20; опубл. 22.07.2020, Бюл. № 21. – 6 с.