На правах рукописи

arff

Липина Ольга Андреевна

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ОПТИЧЕСКИЕ СВОЙСТВА СОЕДИНЕНИЙ Са*RE*₂Ge₃O₁₀ (*RE* – РЕДКОЗЕМЕЛЬНЫЙ ЭЛЕМЕНТ)

специальность 02.00.21 – химия твердого тела

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2017

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте химии твердого тела Уральского отделения РАН

Научный руководитель:	доктор физико-математических наук, старший научный сотрудник, Зубков Владимир Георгиевич
Официальные оппоненты:	Громилов Сергей Александрович, доктор физико-математических наук, профессор, ФГБУН Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН Сюрдо Александр Иванович, доктор физико- математических наук, профессор, ФГБУН Институт промышленной экологии Уральского отделения РАН

Ведущая организация: ФГАОУ ВПО «Уральский федеральный университет им. первого Президента России Б.Н.Ельцина», г. Екатеринбург

Защита состоится «09» ноября 2017 г. в 12⁰⁰ часов на заседании диссертационного совета Д 004.004.01 на базе ФГБУН ИХТТ УрО РАН по адресу: 620990, г. Екатеринбург, ул. Первомайская, 91.

С диссертацией можно ознакомиться в Центральной научной библиотеке Уральского отделения РАН и на сайте ИХТТ УрО РАН: http://www.ihim.uran.ru

Автореферат разослан « » сентября 2017 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Дисс Дьячкова Т.В.

СПИСОК СОКРАЩЕНИЙ

КТР – коэффициент теплового расширения, К-1;

КЧ – координационное число;

МНК – метод наименьших квадратов;

пр.гр. – пространственная группа;

ЭДТА – этилендиаминтетрауксусная кислота;

CR – кросс-релаксация;

 $CR_{M^{z+}}^{n}$ – кристаллический радиус иона M^{z+} с координационным числом *n*, Å;

ET – перенос энергии (energy transfer);

RE – редкоземельный элемент;

*λ*_{ет} – длина волны излучения;

λ_{ех} – длина волны возбуждения;

 v_{as} – валентные асимметричные колебания, см⁻¹;

 v_s – валентные симметричные колебания, см⁻¹.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Неорганические кислородсодержащие соединения (оксиды, фосфаты, силикаты, германаты и др.), допированные ионами лантаноидов, относятся к числу перспективных оптических материалов, способных люминесцировать под действием возбуждающего излучения в широком диапазоне длин волн. Кристаллические среды с разупорядоченной решеткой привлекают особое внимание исследователей из-за возможности кристаллофосфоров создания на ИХ основе c широкополосной люминесценцией. К таких матриц относится $CaY_2Ge_3O_{10}$, числу кристаллическая структура которого была описана в 2006 г. [1]. Особенностями строения данного триортогерманата являются частично разупорядоченное распределение атомов Са и У по трем кристаллографически неэквивалентным катионным позициям (Ca_{0.45}Y_{0.55})(Ca_{0.46}Y_{0.54})(Ca_{0.09}Y_{0.91})Ge₃O₁₀, а также наличие $[Ge_{3}O_{10}]^{8}$, способного многоатомного аниона обеспечить В решетке между оптическими И оптимальное расстояние центрами создать дополнительные каналы возбуждения в активированных фазах [2].

Основными факторами, определяющими функциональные свойства люминесцентного материала, являются химический состав, кристаллическая структура соединения, а также однородность распределения допирующего иона в матрице. Одним из возможных способов химической гомогенизации соединений металлов, используемых в качестве исходных веществ при синтезе люминофоров, является метод синтеза, основанный на применении полиядерных комплексных соединений, например, этилендиаминтетрауксусной кислоты (ЭДТА), $C_{10}H_{16}N_2O_8$, которая, будучи высокодентантной, способна одновременно координировать в одной молекуле катионы нескольких металлов. Насколько известно авторам, на сегодняшний день отсутствуют исследования, посвященные синтезу германатов, в которых бы использовался процесс комплексообразования с ЭДТА, однако данный метод широко применяется для получения многих кислородсодержащих матриц [3–6]. В указанных работах подчеркивается, что использование прекурсорного метода позволяет существенно снизить температуру фазообразования, а получаемый в результате синтеза продукт обладает высокой гомогенностью и развитой поверхностью.

Возможность использования триортогерманата CaY₂Ge₃O₁₀ в качестве оптической матрицы ранее не изучалась. Предполагается, что активирование триортогерманата ионами лантаноидов позволит создать новый класс люминофоров, оптические характеристики которых будут определяться кристаллической структурой: локальным окружением атомов кальция и редкоземельного иона, а также катионным распределением по существующим в решетке трем неэквивалентным позициям. В связи с этим актуальным является выявление взаимосвязи между составом вещества, кристаллической структурой и оптическими свойствами для целого ряда соединений $CaRE_2Ge_3O_{10}$ (RE = La-Yb), синтез которых ранее не проводился. Для решения поставленных задач необходимо применить комплексный подход исследования, подразумевающий данных термогравиметрии, использование рентгеновской совместное И нейтронной дифракции, растровой электронной микроскопии, спектроскопии диффузного отражения И результатов спектрально-люминесцентных измерений.

Диссертационная работа является составным элементом исследований, проводимых в ИХТТ УрО РАН в рамках тем НИР «Развитие научных основ синтеза новых оптических сред с широкополосной эмиссией на основе сложнозамещенных силикатов и германатов, активированных ионами РЗ элементов» (Гос. рег. № 1201364479) и «Развитие научных основ синтеза новых оптических сред с каскадным механизмом эмиссии на основе сложных фаз, № A16активированных редкоземельными элементами» $(\Gamma oc.$ рег. 116122810218-7), а также «Программы фундаментальных научных исследований государственных академий на 2013-2020 годы». Кроме того, об актуальности проводимых исследований свидетельствует поддержка работы грантом Российского фонда фундаментальных исследований №13-03-00047 а «Кристаллохимический дизайн новых оптических сред с триортогруппами Ge₃O₁₀» и грантом УрО РАН №12-Т-1009 «Новые люминесцентные материалы на основе неорганических оптических сред».

Цель работы - установление общих закономерностей «состав - структура - свойство» для новой группы оптических материалов на основе триортогерманатов типа $CaRE_2Ge_3O_{10}$, где RE = Y, La–Yb.

Для достижения поставленной цели были сформулированы следующие задачи исследования:

1. Разработка прекурсорного метода синтеза индивидуальных соединений $CaRE_2Ge_3O_{10}$ (*RE* = La–Yb) и твердых растворов изовалентного замещения $CaY_{2-x}Ln_xGe_3O_{10}$ (Ln = Eu, Tb, Dy), $CaYb_{2-x}Er_xGe_3O_{10}$.

2. Подбор условий твердофазного синтеза индивидуальных соединений $CaRE_2Ge_3O_{10}$ (*RE* = Y, La) и твердых растворов изовалентного замещения $CaY_{2-x}Eu_xGe_3O_{10}$, $CaLa_{2-x}Eu_xGe_3O_{10}$, $CaYb_{2-x}Er_xGe_3O_{10}$ и $CaLa_{2-x}Nd_xGe_3O_{10}$:Ho³⁺.

3. Определение кристаллической структуры и катионного распределения в индивидуальных соединениях $CaRE_2Ge_3O_{10}$ (*RE* = Y, La–Yb) и твердых растворах изовалентного замещения $CaY_{2-x}Ln_xGe_3O_{10}$ (Ln = Eu, Tb, Dy), $CaYb_{2-x}Er_xGe_3O_{10}$ И $CaLa_{2-x}Nd_xGe_3O_{10}:Ho^{3+}$ $CaLa_{2-x}Eu_{x}Ge_{3}O_{10}$, на основе результатов уточнения по методу Ритвельда данных порошковых рентгеновской и нейтронной дифракций.

4. Установление на основе анализа структурных данных общих закономерностей в строении и кристаллохимических критериев стабильности решетки соединений $CaRE_2Ge_3O_{10}$ (*RE* = Y, La–Yb).

5. Исследование спектрально-люминесцентных свойств соединений $CaRE_2Ge_3O_{10}$ (RE = Y, La–Yb) и твердых растворов изовалентного замещения $CaY_{2-x}Ln_xGe_3O_{10}$ (Ln = Eu, Tb, Dy), CaLa_{2-x}Eu_xGe₃O₁₀, CaYb_{2-x}Er_xGe₃O₁₀ и CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺.

6. Определение на основе анализа спектрально-люминесцентных данных оптимальных составов, отвечающих наиболее эффективному преобразованию возбуждающего излучения в видимую и ИК спектральные области.

Научная новизна.

• Впервые осуществлен синтез триортогерманатов типа $CaRE_2Ge_3O_{10}$ (RE = La-Yb) и твердых растворов следующих составов $CaY_{2-x}Ln_xGe_3O_{10}$ (Ln = Eu, Tb, Dy), $CaLa_{2-x}Eu_xGe_3O_{10}$, $CaYb_{2-x}Er_xGe_3O_{10}$ и $CaLa_{2-x}Nd_xGe_3O_{10}$:Ho³⁺.

• Впервые методами нейтроно- и рентгеноструктурного анализа выявлены кристаллохимические особенности соединений $CaRE_2Ge_3O_{10}$ (RE = La-Yb), доказано существование двух морфотропных переходов. Установлены границы устойчивости двух ограниченных твердых растворов: $CaLa_{2-x}Eu_xGe_3O_{10}$ и $CaLa_{2-x}Nd_xGe_3O_{10}$:Ho³⁺. Определены значения коэффициентов теплового расширения для фаз $CaLa_2Ge_3O_{10}$ и $CaPr_2Ge_3O_{10}$.

• С использованием методов колебательной спектроскопии (ИК и КР) определены значения энергий колебаний в решетке $CaRE_2Ge_3O_{10}$ (RE = La-Yb);

• В соединениях CaYb_{2-*x*}Er_{*x*}Ge₃O₁₀ определен механизм апконверсионного преобразования ближнего ИК излучения (980 нм) в видимую область спектра.

• В германатах типа CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺ впервые реализован каскадный механизм люминесценции, позволяющий преобразовывать излучение с $\lambda_{ex} = 808$ нм в серию эмиссионных линий в ближней (0.75–1.0 мкм) и коротковолновой (1–3 мкм) ИК области.

Практическая значимость работы.

• Предложен прекурсорный метод синтеза тонкодисперсных порошков $CaRE_2Ge_3O_{10}$, RE = La-Yb и твердых растворов на их основе.

• Структурные данные для 11 триортогерманатов Ca RE_2 Ge₃O₁₀, RE = La-Yb включены в базу кристаллографических данных «Cambridge Crystallographic Data Center» (CCDC) — вводы №№ 1043042–1043052 и для 4 соединений Ca $Y_{2-x}Eu_xGe_3O_{10}$ (x = 0.0, 0.3, 0.5, 0.8) в базу кристаллографических данных «Inorganic Crystal Structure Data» (ICSD) — вводы №№ 426060–426064.

• Определена концентрация активатора в фазах $CaLa_{2-x}Eu_xGe_3O_{10}$ ($0.1 \le x \le 0.6$), $CaY_{2-x}Eu_xGe_3O_{10}$ ($0.1 \le x \le 0.8$) и $CaY_{2-x}Tb_xGe_3O_{10}$ ($0.03 \le x \le 1.0$), позволяющая достичь наиболее эффективного преобразования УФ излучения в диапазон длин волн 570–720 нм и 370–650 нм, соответственно.

• Синтезированы германаты CaYb_{2-x}Er_xGe₃O₁₀ (0.04 $\leq x \leq$ 0.3) с двух- и трехфотонным механизмом апконверсии лазерного излучения ($\lambda_{ex} = 980$ нм) в излучение видимого диапазона длин волн (400–750 нм), с возможностью использования в качестве термочувствительного сенсора.

• В триортогерманатах CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺ (0.025 $\leq x \leq 0.2$) реализован каскадный механизмом конвертации лазерного излучения ($\lambda_{ex} = 808$ нм) в ИК эмиссию ($\lambda_{em} = 830-3000$ нм), что делает возможным их дальнейшее применения в качестве материалов для оптоэлектронных устройств.

Основные положения, выносимые на защиту:

• Методика получения тонкодисперсных порошков $CaRE_2Ge_3O_{10}$ (RE = Y, La–Yb) и твердых растворов $CaY_{2-x}Eu_xGe_3O_{10}$, $CaY_{2-x}Tb_xGe_3O_{10}$, $CaY_{2-x}Dy_xGe_3O_{10}$, $CaLa_{2-x}Eu_xGe_3O_{10}$, $CaYb_{2-x}Er_xGe_3O_{10}$ и $CaLa_{2-x}Nd_xGe_3O_{10}$:Ho³⁺, основанная на прекурсорном методе с применением ЭДТА.

• Критерии устойчивости в ряду триортогерманатов $CaRE_2Ge_3O_{10}$ (RE = Y, La–Yb) трех типов кристаллических структур: I (RE = La), II (RE = Pr– Eu) и III (RE = Y, Gd–Yb), различающихся катионным распределением, локальным окружением атомов Ca и RE и геометрией триортогруппы [Ge₃O₁₀]⁸⁻. Связь типа кристаллической структуры с размером редкоземельного элемента.

• Результаты исследования люминесцентных свойств триортогерманатов $CaY_{2-x}Ln_xGe_3O_{10}$ (Ln = Eu, Tb, Dy), $CaLa_{2-x}Eu_xGe_3O_{10}$,

CaYb_{2-x}Er_xGe₃O₁₀, CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺ в видимом (380–740 нм) и ИК (830– 3000 нм) диапазонах. Зависимости параметров люминесценции от природы и концентрации иона-допанта, кристаллической структуры матрицы, морфологических характеристик порошков и условий возбуждения.

Достоверность обеспечена результатов применением следующих взаимодополняющих термогравиметрического, методов исследования: нейтроно-И рентгеноструктурного анализа, растровой химического, электронной микроскопии, спектроскопии диффузного рассеяния света, ИК, КР спектроскопии, фотолюминесцентной a также непротиворечивостью И полученных данных современным представлениям о строении и свойствах германатов редкоземельных элементов. При обработке экспериментальных данных использованы методы математической статистики.

Личный вклад автора состоит в совместной с научным руководителем постановке задач исследования, в планировании и проведении экспериментов, в обработке, анализе и обобщении полученных данных. Непосредственно автором проведен синтез CaY2Ge3O10 и твердых растворов изовалентного замещения $CaY_{2-x}Eu_xGe_3O_{10}$ (0.1 $\leq x \leq 0.8$) и $CaY_{2-x}Tb_xGe_3O_{10}$ (0.03 $\leq x \leq 1.0$); полнопрофильного Ритвельда методом анализа (GSAS) определена RE = Pr-Yb;кристаллическая структура $CaRE_2Ge_3O_{10}$, проведена низкотемпературная рентгенографическая съемка образцов CaLa₂Ge₃O₁₀ и CaPr₂Ge₃O₁₀; методом сканирующей электронной микроскопии исследована морфология поверхности соединений; измерены спектры диффузного отражения и люминесценции синтезированных фаз. Отдельные эксперименты проведены при участии сотрудников ИХТТ УрО РАН: инженера Л.Л. Сурат, к.х.н. А.П. Тютюнника, к.х.н. И.И. Леонидова, к.х.н. В.Т. Сурикова, н.с. Бергера И.Ф., а также и сотрудника УрФУ им. первого Президента России Б.Н. Ельцина К.Г. Беловой. Обсуждение полученных результатов и написание научных статей проведено автором совместно с научным руководителем и соавторами.

Апробация работы. Основные результаты работы обсуждены на VII и VIII Национальных кристаллохимических конференциях (Суздаль, 2013, 2016), Российской научной конференции XXIII молодежной «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2013), семинаре 51^{ой} Международной научной студенческой конференции «Химия твердого применение химической технологии тела – В И материаловедении» (Новосибирск, 2013), XV и XVI Международных Феофиловских симпозиумах по спектроскопии кристаллов, активированных ионами редкоземельных и переходных металлов (Казань, 2013; Санкт-Петербург, 2015), Международной конференции люминесценции оптической спектроскопии по И конденсированного состояния (Вроцлав, Польша, 2014), Ежегодном совещании

7

80й минералогического общества (Йена, Германия, 2014), немецкого колебательной Международной конференции по спектроскопии (Вена, Австрия, 2015), 4^{ой} Международной конференции по физике оптических материалов и устройствам (Будва, Черногория, 2015), 10^{ом} Всероссийском симпозиуме с международным участием «Термодинамика и материаловедение» (Санкт-Петербург, 2015) и 1^{ом} Международном симпозиуме по передовым материалам для фотоники (Санкт-Петербург, 2016).

Публикации. По материалам диссертации опубликовано 6 статей в рецензируемых изданиях, рекомендованных ВАК, и 12 тезисов докладов на международных и всероссийских конференциях.

Структура и объем диссертации. Диссертационная работа состоит из введения, 4 глав, заключения с выводами, списка цитируемой литературы и приложения. Общий объем диссертации 147 страниц, включая 69 рисунка и 18 таблиц. В списке цитируемой литературы 211 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Bo введении обоснована актуальность изучения синтеза И кристаллохимических спектрально-люминесцентных свойств И триортогерманатов $CaRE_2Ge_3O_{10}$ (*RE* = Y, La–Yb), показана научная новизна и практическая значимость результатов исследований. Сформулированы цель, задачи исследования и основные положения, выносимые на защиту, приведены сведения об апробации работы и публикациях по основным результатам исследований.

В первой главе сделан обзор литературных данных по синтезу и структуре известных к настоящему времени групп неорганических соединений, содержащих в своей структуре изолированный анион $[T_3O_{10}]^{n-}$, где $T = Si^{4+}$, Ge^{4+} , Al^{3+} , P^{5+} , V^{5+} . Особое внимание уделено катионному распределению и геометрии триортогруппы. В заключении главы сформулированы цели и задачи диссертационного исследования.

Во второй главе приведено описание способов синтеза фаз Ca RE_2 Ge₃O₁₀ (RE = Y, La–Yb) и твердых растворов изовалентного замещения CaY_{2-x}Eu_xGe₃O₁₀ ($0.1 \le x \le 0.8$), CaY_{2-x}Tb_xGe₃O₁₀ ($0.03 \le x \le 1.0$), CaY_{2-x}Dy_xGe₃O₁₀ ($0.1 \le x \le 1.0$), CaLa_{2-x}Eu_xGe₃O₁₀ ($0.1 \le x \le 0.6$), CaYb_{2-x}Er_xGe₃O₁₀ ($0.04 \le x \le 0.3$) и CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺ ($0.025 \le x \le 1.2$); даны краткие характеристики методов исследования, использованных в работе.

В качестве основного *метода синтеза* триортогерманатов использовали прекурсорную методику с применением этилендиаминтетрауксусной кислоты (ЭДТА). Ряд соединений был получен также твердофазным методом, что

позволило в дальнейшем сравнить спектрально-люминесцентные свойства конечных продуктов синтеза.

Рис. 1 Схема прекурсорного метода синтеза фаз Ca*RE*₂Ge₃O₁₀ (*RE* = Y, La-Yb) и твердых растворов на их основе отжигу. Условия дальнейшей редкоземельного элемента.

 RE_2O_3 (99.98%) (RE = La, Nd, Eu-Yb), $Pr(OH)_3$ (99.98%) И CaCO₃ (99.9%) переводили в раствор с использованием HNO₃ (6 M) (рис. 1). Для растворения использовали слабый GeO₂ раствор аммиака (0.5 M). Полученные растворы вместе И тщательно сливали перемешивали. Далее добавляли аммиачный раствор ЭДТА. Суммарный раствор, содержащий Ca^{2+} , RE^{3+} , Ge^{4+} и ЭДТА выпаривали в фарфоровой чашке. Полученный в результате окислительновосстановительной реакции черный пористый гель отжигали при температуре 200-800 °C на воздухе. Образовавшийся порошок белого цвета перетирали И прессовали таблетки, которые подвергали термообработки зависели OT типа

Термические исследования. Для выявления динамики фазовых и структурных превращений образцы $CaY_2Ge_3O_{10}$ исследовали на синхронном термическом анализаторе NETZSCH STA 409 PC Luxx, позволяющем одновременно выполнять ТГ и ДСК измерения. Съемку проводили в алундовых тиглях в режиме нагрева от 40 °C до 1000 °C в атмосфере Ar. Скорость изменения температуры составляла 5°/мин. Выделяющиеся газообразные продукты исследовали на масс-спектрометрическом анализаторе NETZSCH QMS 403C Aëolos.

Фазовый и структурный анализ. Рентгенограммы образцов были сняты на дифрактометре STADI-Р (STOE), оснащенном линейным позиционночувствительным детектором. Съемка проводилась в Си *К*_{α1}-излучении в интервале углов 20 5°-120° с шагом 0.02°. В качестве внешнего либо внутреннего стандарта использовали поликристаллический кремний С a = 5.43075(5) Å. Идентификация параметром элементарной ячейки дифракционных данных проводилась с использованием базы данных PDF2 (Powder Diffraction Files, Release 2009, International Center for Diffraction Data, США). Нейтронограммы образцов $CaRE_2Ge_3O_{10}$ (*RE* = La, Nd, Er) были сняты при комнатной температуре с использованием нейтронного дифрактометра высокого разрешения Д7а, входящего в состав комплекса уникальных научных установок ИФМ УрО РАН на исследовательском реакторе ИВВ-2М (г. Заречный). Интервал углов 2*θ* составлял 10°–125°, шаг – 0.05°.

Уточнение кристаллических структур соединений $CaRE_2Ge_3O_{10}$ (RE = Y, La–Yb) проведено методом полнопрофильного анализа Ритвельда с использованием данных порошковых рентгеновской и нейтронной дифракций. В качестве стартовой модели использовали ранее опубликованные данные для $CaY_2Ge_3O_{10}$ [1]. Модель кристаллической структуры для состава $CaLa_2Ge_3O_{10}$ определяли прямыми методами на основе пакета программ EXPO 2009 и далее проводили ее уточнением МНК с использованием программы GSAS [7–9].

При проведении низкотемпературных рентгенографических исследований германатов CaLa₂Ge₃O₁₀ и CaPr₂Ge₃O₁₀ порошок помещали в кварцевый капилляр диаметром 0.3 мм, который затем устанавливали на держателе, обеспечивающем вращение образца. Охлаждение производилось с использованием низкотемпературной системы Cryostream Cooler (Oxford Cryosystems) с дополнительной системой осушки воздуха AD31 Dry Air Unit. Устройство позволяет генерировать внутренний поток газообразного азота, который направляли непосредственно на образец, и внешний поток сухого воздуха (v = 8 л/мин). Съемку проводили при постоянном вращении в интервале температур 80–298 К (температурные колебания не превышали 0.1 К).

Исследование микроструктуры и морфологии образцов производили на растровом электронном микроскопе JEOL JSM-6390. Измерения плотности порошков $CaRE_2Ge_3O_{10}$ (*RE* = Y, La–Yb) проводились с использованием гелиевого пикнометра AccuPyc II 1340, работающего по принципу вытеснения газа. Инфракрасные спектры поглощения регистрировали на ИК Фурье спектрометре Bruker Vertex в диапазоне 400-4000 см⁻¹ от порошкообразных образцов, приготовленных в виде таблеток с иодидом цезия CsI. Спектры комбинационного рассеяния света (КР) в интервале сдвигов 50-4000 см⁻¹ были получены на спектрометре Renishaw U1000 (HeNe - лазер, $\lambda = 633$ нм, P = 5 мВт). Измерение спектров диффузного отражения проводилось на спектрофотометре UV-3600 фирмы Shimadzu (Япония). оснащенном приставкой ISR-3100 с интегрирующей сферой. В качестве эталона использовали сульфат бария (99.8 %).

Спектрально-люминесцентные исследования осуществляли с использованием импульсного флуоресцентного спектрофотометра Cary Eclipse (Varian). В качестве источника возбуждения для регистрации стоксовой люминесценции использовалась импульсная ксеноновая лампа (мощность 75 кВт, длительность импульса составляла 2 мкс, частота импульсов 80 Гц).

10

При исследовании апконверсии возбуждение осуществлялось с помощью $\lambda_{\rm ex} = 980$ HM, $P_{max} = 140 \text{ мBt}$ (KLM-H980-120-5, ФТИдиодного лазера, Оптроник, Россия). Цветовые координаты (СІЕ) были измерены с помощью спектрального колориметра ТКА WD01. Эмиссионные спектры в инфракрасной области были получены методом синхронной съёмки с использованием монохроматора МДР-204 (90° геометрия, дифракционная решетка 300 штр./мм) и PbS фотосопротивления (ЛОМО-Фотоника, Россия). В качестве внешнего возбуждения диодный источника использовался лазер. $\lambda_{\rm ex} = 808$ HM, $P_{max} = 150 \text{ мBt}$ (КLМ-Н808-120-5, ФТИ-Оптроник, Россия). Лазерное излучение модулировали оптическим затвором (чоппер) с частотой 200 Гц. Измерение выхода люминесценции для составов $CaYb_{1.8}Er_{0.2}Ge_{3}O_{10}$ квантового И CaLa_{1.925}Nd_{0.075}Ge₃O₁₀:Ho³⁺ осуществлялось с использованием интегрирующей сферы AvaSphera - 50 (Avantes, Нидерланды). В случае CaYb_{1.8}Er_{0.2}Ge₃O₁₀ измерения проводились в интервале длин волн 400–1000 нм ($\lambda_{ex} = 980$ нм, последующей корректировкой $P_{\rm max} = 140 \text{ MBT}$) спектральную с на чувствительность ФЭУ. В случае CaLa_{1.925}Nd_{0.075}Ge₃O₁₀:Ho³⁺ спектры были сняты в интервале 750–2600 нм ($\lambda_{ex} = 808$ нм, $P_{max} = 150$ мВт) с корректировкой на спектральную чувствительность PbS фотосопротивления.

Все оптические измерения проводили при комнатной температуре.

В третьей главе рассмотрены условия формирования германата $CaY_2Ge_3O_{10}$, синтезированного с использованием ЭДТА; приведены результаты структурного анализа фаз $CaRE_2Ge_3O_{10}$ (RE = Y, La–Yb) и твердых растворов изовалентного замещения; изучены кристаллохимические особенности впервые полученных германатов; проведена идентификация полос на ИК спектрах поглощения и спектрах КР.

Фазообразование германата *CaY₂Ge₃O₁₀*. На рис. 2 представлены результаты термического анализа с прекурсора соотношением Ca:Y:Ge = 1:2:3 в сочетании с массвыделяющихся спектрометрией газов. Анализ ТГ и ДСК кривых позволил выделить три основных стадии формирования германата. Первая стадия 280 °C) (до небольшими характеризуется потерями массовыми (около 5 мас.%) и связана с процессом дегидратации. Наибольшие потери,

Рис. 2 Термограмма разложения прекурсора с соотношением Ca:Y:Ge = 1:2:3, полученного с использованием ЭДТА

порядка 27 мас. %, происходят в интервале температур 280–600 °С и вызваны удалением остатков воды, азотной кислоты, разложением нитрата аммония и органической матрицы, при этом происходит выделение газов NO и CO₂. Дальнейшее увеличение температуры (740–890 °C) приводит к окислению углерода кислородом воздуха с образованием диоксида углерода. При T > 950 °C изменение массы продукта не происходит.

Результаты термического анализа подтверждаются данными РФА и ИКспектроскопии (рис. 3). Формирование фазы наблюдается при температуре ~ 800 °C, однако наличие широкого гало на рентгенограммах и двух слаборазрешенных полос с максимумами при 420 см⁻¹ и 770 см⁻¹ на ИК спектрах свидетельствует о недостаточной степени окристализованности образца. Отжиг при 1000 °C способствует росту интенсивности основных пиков. ИК–спектр усложняется, что говорит о формировании в решетке дальнего порядка

Рис. 3 *а*) – Изменение рентгеновской дифрактограммы $CaY_2Ge_3O_{10}$ в зависимости от температуры отжига. Данные представлены совместно с дифрактограммой, рассчитанной по данным для монокристалла $CaY_2Ge_3O_{10}$, приведенным в работе [1] (ICSD#172612); δ) – Изменение ИК-спектра $CaY_2Ge_3O_{10}$ в зависимости от температуры отжига

Кристаллическая структура. Согласно данным рентгеновской дифракции, соединения Ca RE_2 Ge₃O₁₀ (RE = Y, La–Yb) и твердые растворы на их основе кристаллизуются в моноклинной сингонии, пр.гр. $P2_1/c$, Z = 4. Результаты полнопрофильного уточнения кристаллической структуры для фаз Ca Y_2 Ge₃O₁₀ и CaLa₂Ge₃O₁₀ приведены на рис. 4*a*, *б*.

На рис. 5 представлены зависимости параметров и объема элементарных ячеек исследованных соединений от кристаллического радиуса иона редкоземельного элемента (КЧ = 7) [10].

Рис. 4 Наблюдаемая (черные крестики), расчетная (красная сплошная линия) и разностная (синяя сплошная линия) рентгеновские порошковые дифрактограммы a) - CaY₂Ge₃O₁₀ и δ) - CaLa₂Ge₃O₁₀

При возрастании кристаллического радиуса иона редкоземельного элемента, $CR_{PE^{3+}}^{VII}$, в ряду соединений $CaRE_2Ge_3O_{10}$ (RE = Y, La - Yb)наблюдается увеличение объёма кристаллической ячейки. Однако, несмотря на то, что соединения кристаллизуются в одной и той пространственной же группе, возрастание носит нелинейный характер.

Скачкообразное изменение объема для $CaLa_2Ge_3O_{10}$ указывает на морфотропный переход I рода. Таким образом, германаты $CaLa_2Ge_3O_{10}$ И $CaRE_2Ge_3O_{10}$ (*RE* = Y, Pr–Yb) не образуют между собой непрерывный твердых ряд растворов замещения. Для определения границ двухфазной области (заштрихованной на рис. 5) была синтезирована серия германатов $CaLa_{2-x}Eu_{x}Ge_{3}O_{10}$

Гис. 5 Зависимость параметров яченки $CaRE_2Ge_3O_{10}$ (RE = Y, La–Yb) от $CR_{RE^{3+}}^{VII}$. Для Pr, Nd, Но и Tm значения $CR_{RE^{3+}}^{VII}$ посчитаны как среднее значение от $CR_{RE^{3+}}^{VI}$ и $CR_{RE^{3+}}^{VIII}$

 $(0.1 \le x \le 0.6)$. Максимальное количество допанта, позволяющее получить образец изоструктурный германату CaLa₂Ge₃O₁₀, равняется 0.6 (средний $= (1.4 \cdot CR_{La^{3+}}^{VII} + 0.6 \cdot CR_{Eu^{3+}}^{VII})$ кристаллический радиус 2 = 1.21 Å). Следовательно, образование твердых растворов на основе лантансодержащей фазы возможно в тех случаях, когда средний кристаллический радиус RE³⁺ данное подтверждено больше 1.21 Å. Позднее утверждение было $CaLa_{2-x}Nd_xGe_3O_{10}$ существованием ограниченных твердых растворов $(0.1 \le x \le 1.0).$

коэффициентов расширения от $CR_{RE^{3+}}^{VII}$ для $CaRE_2Ge_3O_{10}$ (*RE* = Y, Pr–Yb)

В ряду соединений $CaRE_2Ge_3O_{10}$ $(RE = \mathbf{Y},$ Pr-Yb) происходит отклонение величин параметров элементарной ячейки от линейной наиболее выраженное зависимости, для *с* и β ; граничными в этом случае являются составы CaGd₂Ge₃O₁₀ и $CaEu_2Ge_3O_{10}$ Изменение (рис. 5). параметров ячейки без скачкообразного изменения объёма указывает существование на морфотропного перехода Π рода. Наличие данного перехода подтверждается резким изменением коэффициентов линейного расширения, α_L . Функции $\alpha_L = f(CR_{RE^{3+}}^{VII})$, рассчитанные для трех параметров элементарной ячейки, демонстрируют очевидный разрыв (рис. 6), что может

быть связано со смещением атомов и наличием перехода типа «порядокбеспорядок».

Во всех триортогерманатах $CaRE_2Ge_3O_{10}$ (*RE* = Y, La–Yb) атомы Ca и *RE* формируют чередующиеся вдоль направления [001] слои, параллельные плоскости (ab), связанные между собой посредством триортогрупп в трехмерный каркас (рис. 7).

RE Изменение распределения Ca катионного И атомов продемонстрировано на рис. 8. В ряду $CaYb_2Ge_3O_{10} \rightarrow CaGd_2Ge_3O_{10}$ атомы кальция и редкоземельного элемента занимают три кристаллографически неэквивалентные позиции с КЧ = 7, при этом третья катионная позиция Ca/RE(3) практически полностью занята атомами RE, а две другие содержат примерно равное количество атомов кальция и редкоземельного элемента. При переходе к CaEu₂Ge₃O₁₀ наблюдается увеличение степени катионного разупорядочения, достигающее максимума в CaNd₂Ge₃O₁₀ и CaPr₂Ge₃O₁₀

14

(рис. 8). Отметим, что $CR_{Nd^{3+}}^{VII}$ (1.186 Å), $CR_{Pr^{3+}}^{VII}$ (1.198 Å) и $CR_{Ca^{2+}}^{VII}$ (1.20 Å) имеют близкие значения, отсутствие размерных отличий способствует статистическому распределению атомов в решетке.

Рис. 7 Вид кристаллической структуры соединений $CaRE_2Ge_3O_{10}$ (RE = Y, La–Yb) вдоль направления [010]. Позиции Ca/RE(1) изображены в виде шаров красного, Ca/RE(2) – желтого, Ca/RE(3) – лилового цвета

Происходящие В ряду CaEu₂Ge₃O₁₀ $CaPr_2Ge_3O_{10}$ приводят замещения к сокращению расстояния Ca/RE(1)-O(4) от 3.39(2) Å ДО 2.92(2) Å и соответствующему увеличению валентных усилий связи от 0.026 до 0.111. Атом первой O(4)оказывается В сфере. координационной что приводит увеличению к координационного числа атомов Ca/RE(1) до восьми. В решетке CaLa₂Ge₃O₁₀ наблюдается более перестройка выраженная кристаллической структуры,

катионных позиций в германатах $CaRE_2Ge_3O_{10}$ (RE = Y, La-Yb) от $CR_{RE^{3+}}^{VII}$

сопровождающаяся изменением координационного окружения атомов Ca/La(1), La(3) и практически полным катионным упорядочением (рис. 8). Структурная

формула триортогерманата лантана может быть записана следующим образом: $(Ca_{0.93}La_{0.07})^{VI}(Ca_{0.07}La_{0.93})^{VII}(La_{1.00})^{VIII}Ge_3O_{10}$.

Катионное перераспределение, происходящее при переходе от $CaPr_2Ge_3O_{10}$ к $CaLa_2Ge_3O_{10}$, приводит к неравномерному смещению тетраэдров $Ge(1)O_4$ и $Ge(3)O_4$, и, следовательно, к изменению геометрии всего аниона $[Ge_3O_{10}]^{8-}$, при этом наблюдается: *a*) резкое уменьшение угла Ge(1)-Ge(2)-Ge(3) от 147.8° до 116.2° б) увеличение разницы между расстояниями Ge(1)-Ge(2) и Ge(2)-Ge(3) *в*) поворот двух концевых тетраэдров относительно мостиковых атомов кислорода, приводящий к формированию скошенной конформации в случае $Ge(3)O_4$ и $Ge(2)O_4$.

При проведении низкотемпературных рентгенографических исследований в интервале температур 80 – 298 К для германатов CaLa₂Ge₃O₁₀ и CaPr₂Ge₃O₁₀ фазовых переходов обнаружено не было; параметры и объем ячейки линейно уменьшались с понижением температуры. Для CaLa₂Ge₃O₁₀ коэффициенты линейного теплового расширения KTP_a, KTP_b, KTP_c составляют 6.4·10⁻⁶ K⁻¹, 4.0·10⁻⁶ K⁻¹, 8.4·10⁻⁶ K⁻¹, соответственно, что свидетельствует о наличии сильного взаимодействия между атомами в катионных слоях. Противоположная ситуация наблюдается в CaPr₂Ge₃O₁₀, для которого KTP_c (0.5·10⁻⁶ K⁻¹) намного меньше KTP_a (2.2·10⁻⁶ K⁻¹) и KTP_b (5.0·10⁻⁶ K⁻¹). Величина объёмного коэффициента теплового расширения составила 17.0·10⁻⁶ K⁻¹ для CaLa₂Ge₃O₁₀.

Кристаллохимические представления о строении триортогерманатов согласуются с дополнительными сведениями, полученными с использованием методов колебательной спектроскопии. ИК спектры образцов Ca RE_2 Ge₃O₁₀ (RE = Y, La–Yb) показаны на рис. 9*a*. Общий вид и структура полос для Ca RE_2 Ge₃O₁₀ (RE = Pr–Yb) в интервале 400–1000 см⁻¹ идентичны. Спектры комбинационного рассеяния света (рис. 9*б*) приведены только для составов с RE = Y, La, Nd, Gd, Tb, поскольку в остальных случаях возбуждение лазером с $\lambda_{ex} = 633$ нм приводило к появлению люминесценции.

Наиболее интенсивные полосы при ~ 596 см⁻¹ в ИК спектрах и линии в области 590–596 см⁻¹ в спектрах КР связаны с валентными симметричными колебаниями мостиковых связей, v_s (GeOGe). В спектрах лантансодержащего германата наблюдается уменьшение интенсивности данной полосы И существенный сдвиг в область меньших волновых чисел, что связано с $[Ge_3O_{10}]^{8-}$. конформации триортогруппы Асимметричные изменением колебания мостиковых связей, v_{as} (GeOGe) проявляются в виде плеча при ~ 860-890 см⁻¹ на ИК спектрах. Наиболее интенсивные линии КР, расположенные при 841; 833, 854; 843, 845, 870; 849, 873 см⁻¹ в спектрах CaLa₂Ge₃O₁₀, $CaNd_2Ge_3O_{10}$, CaGd₂Ge₃O₁₀, CaTb₂Ge₃O₁₀ и CaY₂Ge₃O₁₀, соответственно, и

16

линии средней интенсивности на ИК спектрах в области 800–860 см⁻¹ связаны с симметричными валентными колебаниями v_s (GeO₃). Ряд слаборазрешенных полос в спектрах КР в области 650–815 см⁻¹ относится к асимметричным колебаниям GeO₃, v_{as} (GeO₃), которые проявляются также в спектрах ИК в области 630–800 см⁻¹.

Деформационные колебания концевых групп GeO₃, δ_s (GeO₃), приводят к появлению интенсивных ИК полос и линий комбинационного рассеяния в интервале 360-570 см⁻¹. При этом колебания, происходящие без изменения углов О–Ge–О: маятниковые, ρ (GeO₃), и крутильно-деформационные, τ (GeO₃), проявляются в области меньших волновых чисел данного диапазона. Необходимо отметить, что деформационные колебания Ge–O связей проявляются более отчетливо в ИК-спектрах, чем в спектрах КР. Данная особенность наблюдалась и в более ранних исследованиях и обусловлена наличием сильного колебательного смешивания, происходящего при волновых числах ≤ 550 см⁻¹.

Рис. 9 *a*) ИК-спектры германатов Ca RE_2 Ge₃O₁₀ (RE = Y, La–Yb); δ) КР – спектры германатов Ca RE_2 Ge₃O₁₀ (RE = Y, La, Nd, Gd и Tb)

В четвертой главе представлены результаты исследований спектральнолюминесцентных свойств отдельных соединений Ca*RE*₂Ge₃O₁₀ и твердых растворов на их основе.

Замещение позиций Y^{3+} либо La^{3+} в триортогерманатах $CaY_2Ge_3O_{10}$ и $CaLa_2Ge_3O_{10}$ ионами Eu^{3+} , Tb^{3+} и Dy^{3+} приводит к образованию трех типов оптических центров, обладающих различным локальным окружением.

Фотолюминесценция твердых растворов $CaY_{2-x}Eu_xGe_3O_{10}$ (0.1 $\leq x \leq 0.8$) и $CaLa_{2-x}Eu_xGe_3O_{10}$ (0.1 $\le x \le 0.6$) характеризуется серией линий в оранжевокрасной спектральной области, которые связаны с переходами ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0, 1, 2, 3, 4) в ионах Eu^{3+} (рис. 10*a*, б). Интенсивности данных переходов поразному зависят от симметрии локального окружения иона Eu³⁺. Поскольку ионы как в лантансодержащей, так и в иттрийсодержащей матрицах занимают позицию 4*e* с точечной группой симметрии C_1 , полоса (604–640 нм), обусловленная электрическим дипольным переходом ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, обладает Вычисленное наибольшей интенсивностью. значение асимметричного $A_{\rm Eu} = I({}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2})/I({}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}),$ составляет 1.8 отношения. 2.3 И для $CaY_{2-x}Eu_xGe_3O_{10}$ и $CaLa_{2-x}Eu_xGe_3O_{10}$, соответственно, что указывает на более симметричное координационное окружение иона-активатора В матрице CaLa₂Ge₃O₁₀ Данное обстоятельство согласуется с результатами структурного анализа, согласно которым в CaLa₂Ge₃O₁₀ помимо низкосимметричной позиции иона RE^{3+} с KH = 7 существуют кристаллографические позиции с KH = 6 и 8. Максимальной интенсивностью свечения при возбуждении в область переноса заряда обладают составы CaY_{1.7}Eu_{0.3}Ge₃O₁₀ и CaLa_{1.6}Eu_{0.4}Ge₃O₁₀.

Рис. 10 Спектры фотолюминесценции и возбуждения a) - образцов CaY_{1.2}Eu_{0.8}Ge₃O₁₀, синтезированных прекурсорным методом, конечная температура отжига 800 °C (1), 1000 °C (2), 1100 °C (3) и образца, полученного твердофазным методом (4), δ) – германата CaLa_{1.6}Eu_{0.4}Ge₃O₁₀, синтезированного твердофазным методом

Влияние температуры отжига и метода синтеза на люминесцентные свойства образцов CaY_{1.2}Eu_{0.8}Ge₃O₁₀ продемонстрировано на рис. 10*а* Термообработка положительно влияет на эмиссионные характеристики порошков, что связано с совершенствованием кристаллической структуры и увеличением размера кристаллитов.

Наиболее интенсивные линии для серии CaY_{2-x}Tb_xGe₃O₁₀ ($0.03 \le x \le 1.0$) ($\lambda_{ex} = 235$ нм) находятся при $\lambda_{em} = 488$, 542, 583 и 620 нм и являются следствием переходов с возбужденного ⁵D₄ уровня (рис. 11). При малых концентрациях активатора ($x \le 0.2$) в спектре люминесценции появляется дополнительная эмиссия с максимумами вблизи $\lambda_{em} = 379$, 416, 437 и 462 нм, обусловленная переходами ${}^{5}D_{3} \rightarrow {}^{7}F_{J}$, J = 6-3. По мере увеличения содержания допанта происходит уменьшение синего свечения с последующим увеличением зеленой компоненты (переходы ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$), что связано с процессом кросс-релаксации. Таким образом, в люминофорах с тербиевым активатором существуют две критические концентрации: первая – для переходов ${}^{5}D_{3} \rightarrow {}^{7}F_{J}$ (J = 6-3), а вторая – для переходов ${}^{5}D_{3} \rightarrow {}^{7}F_{4}$ (J = 6-3), а вторая – для переходов ${}^{5}D_{3} \rightarrow {}^{7}F_{6}$) наблюдается для состава CaY_{1.93}Tb_{0.07}Ge₃O₁₀, в то время как наибольшее свечение при 542 нм демонстрирует германат с содержанием допанта x = 0.3.

Рис. 11 Спектры фотолюминесценции и возбуждения CaY_{1.6}Tb_{0.4}Ge₃O₁₀, синтезированного прекурсорным методом

Возбуждение образцов $CaY_{2-x}Dy_xGe_3O_{10}$ (0.1 $\leq x \leq 1.0$) осуществлялось $\lambda_{\text{ex}} = 351$ нм (⁶H_{15/2} \rightarrow ⁴M_{15/2}, ²P_{7/2}). Полосы с В излучением спектре люминесценции обусловлены переходами с возбужденного ⁴F_{9/2} уровня на нижележащие ${}^{6}\text{H}_{J}$ (J = 13/2, 11/2, 9/2) состояния (рис. 12). Для всех составов 580 нм, соответствующая переходу ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$, полоса при обладает наибольшей интенсивностью. Коэффициент асимметрии $A_{\rm Dv}$ равный $I({}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2})/I({}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2})$ интенсивностей отношению интегральных 1.1 - 1.4.Максимум принимает значения свечения достигается при концентрации допанта, x = 0.1.

Рис. 12 Спектры фотолюминесценции и возбуждения CaY_{1.9}Dy_{0.1}Ge₃O₁₀, синтезированного прекурсорным методом

В спектрах диффузного отражения света триортогерманатов Ca RE_2 Ge₃O₁₀ (RE = Er, Yb) присутствует полный набор линий, связанных с поглощением энергии основным состоянием и возбуждением вышележащих уровней в ионах RE^{3+} . Значение оптической щели, рассчитанное из предположения, что в германатах реализуется прямой разрешенный тип электронного перехода, составляет 4.8 ± 0.1 эВ для CaYb₂Ge₃O₁₀ и 5.5 ± 0.1 эВ для CaEr₂Ge₃O₁₀. Близкое расположение полос, соответствующих возбуждению ²F_{5/2} состояний в ионах Yb³⁺ и ⁴I_{11/2} в Er³⁺, способствует возникновению антистоксовой люминесценции (апконверсии) в эрбий-иттербиевых твердых растворах.

Возбуждение образцов CaYb_{2-*x*}Er_{*x*}Ge₃O₁₀ (x = 0.1-0.3) лазерным диодом с $\lambda_{ex} = 980$ нм, $P_{max} = 140$ мВт приводит к возникновению яркой эмиссии (рис. 13). *а*) *б*)

Рис. 13 *а*) - Спектры апконверсионной люминесценции ($\lambda_{ex} = 980$ нм) составов CaYb_{1.8}Er_{0.2}Ge₃O₁₀, синтезированных прекурсорным (1) и твердофазным (2) методами; δ) - зависимость интенсивности фотоэмиссии для CaYb_{1.8}Er_{0.2}Ge₃O₁₀, синтезированного прекурсорным методом, от мощности лазерного излучения (на вставке представлена фотография люминесцирующего образца, $P = P_{max} = 140$ мВт)

Наибольшая интенсивность линий при 408 нм (${}^{2}\text{H}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$), 524 нм (${}^{2}\text{H}_{11/2} \rightarrow {}^{4}\text{I}_{15/2}$), 548 нм (${}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$) и 659 нм (${}^{4}\text{F}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$) наблюдается для образца с x = 0.2, синтезированного прекурсорным методом (рис. 13*a*). Величина квантового выхода для данного состава с учетом возможных ошибок составляет около 3 %. Наличие синей эмиссии указывает на высокую эффективность процессов переноса энергии в матрице.

Приведенные на рис. 13*б* зависимости интенсивности основных эмиссионных линий от мощности лазера, $I(P) \propto P^n$, указывают на протекание как двухфотонного, так и трехфотонного процессов; на основе полученных данных был предложен механизм возникновения апконверсии в германатах CaYb_{2-x}Er_xGe₃O₁₀ (рис. 14).

Рис. 14 Механизм возникновения апконверсионной люминесценции в твердых растворах $CaYb_{2-x}Er_xGe_3O_{10}$ ($\lambda_{ex} = 980$ нм)

При возбуждении лазерным излучением с длиной волны $\lambda_{ex} = 808$ нм в твердых растворах CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺ (0.0 $\leq x \leq 1.0$) была зарегистрирована ИК люминесценция. В ходе экспериментальных исследований оптических свойств обнаружено, что ионы Nd³⁺ в данной оптической матрице выступают в качестве сенсибилизатора, способствующему повышению люминесцентной активности редкоземельных ионов Ho³⁺.

На рис. 15 приведены спектры для составов с x = 0.025-0.20, обладающих наибольшей интенсивностью эмиссии. Наиболее интенсивная полоса в области 2.0–2.3 мкм относится к ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ переходу в ионе гольмия. Состав с содержанием допанта x = 0.075 (концентрация $Ho^{3+} = 2.0*10^{-6}$ ат. %) обладает

наибольшей интенсивностью люминесценции; величина квантового выхода, измеренная в диапазоне 830–2600 нм, составила 13 %.

Рис. 15 Спектры люминесценции соединений CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺ ($\lambda_{ex} = 808$ нм).

На основе литературных данных был предложен механизм осуществления передачи энергии между активными центрами (рис. 16). Излучение лазерного диода ($\lambda_{ex} = 808$ нм) поглощается преимущественно Nd³⁺, что приводит к Последующая заселению ${}^{4}F_{5/2}$ уровня. безызлучательная релаксация способствует заполнению нижележащего ⁴F_{3/2} уровня, являющегося начальным для ряда переходов, сопровождающихся излучением в ближнем ИК-диапазоне. Одновременно существует возможность переноса энергии от неодима к ионам гольмия (ЕТ), приводящее к заселению ${}^{5}I_{5}$ состояния в Ho^{3+} : ${}^{4}F_{3/2}$ (Nd³⁺) + ${}^{5}I_{8}$ (Ho³⁺) $\rightarrow {}^{4}I_{9/2}$ (Nd³⁺) + ${}^{5}I_{5}$ (Ho³⁺). Переход ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$, предположительно, является безызлучательным, поскольку разница между энергиями начального и конечного состояний, $\Delta E = 2560 \text{ см}^{-1} \approx 3h\omega_{\text{max}}$. Последующие переходы ${}^{5}\text{I}_{6} \rightarrow {}^{5}\text{I}_{7}$ и ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ в Но³⁺ приводят к появлению люминесценции в коротковолновом ИК диапазоне $\lambda_{\rm em} = 2.7$ мкм 2.1 мкм, соответственно. при И Максимум интенсивности для этих двух линий достигается при разном содержании допанта: при x = 0.1 (концентрация $Ho^{3+} = 2.7 \cdot 10^{-6}$ ат. %) для полосы при 2.7 мкм и при x = 0.075 (концентрация $Ho^{3+} = 2.0 \cdot 10^{-6}$ ат. %) для полосы при 2.1 мкм, данное обстоятельство может быть связано с протеканием кроссрелаксационных процессов (CR), приводящих К дополнительному возбуждению ${}^{5}I_{7}$ состояния в Ho³⁺.

22

Рис. 14 Схема межуровневых переходов, передачи энергии (ET) и кросс-релаксации (*CR*) между ионами Nd^{3+} и Ho³⁺ в германатах CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺ ($\lambda_{ex} = 808$ нм)

Таким образом, в соединениях $CaLa_{2-x}Nd_xGe_3O_{10}$:Ho³⁺ ($0.0 \le x \le 1.0$) реализована каскадная люминесценция, что позволяет преобразовывать излучение с $\lambda_{ex} = 808$ нм в серию эмиссионных линий в ближней и коротковолновой ИК-области.

выводы

1. Разработана жидкофазная методика получения гомогенного прекурсора с применением этилендиаминтетрауксусной кислоты (ЭДТА) и выработан твердофазного синтеза индивидуальных регламент соединений с триортогруппами $[Ge_3O_{10}]^{8-}$ - Ca $RE_2Ge_3O_{10}$, RE = Y, La–Yb и твердых растворов изовалентного замещения $CaY_{2-x}Ln_xGe_3O_{10}$ (Ln = Eu, Tb, Dy), $CaLa_{2-x}Eu_xGe_3O_{10}$. $CaYb_{2-x}Er_xGe_3O_{10}$ и $CaLa_{2-x}Nd_xGe_3O_{10}$:Ho³⁺. Представленные способы синтеза позволяют получить образцы с различными морфологическими и размерными характеристиками и выявить их влияние на интенсивность люминесценции активированных фаз.

2. Впервые определена кристаллическая структура триортогерманатов $CaRE_2Ge_3O_{10}$ (RE = La - Yb), $CaY_{2-x}Ln_xGe_3O_{10}$ (Ln = Eu, Tb, Dy), $CaLa_{2-x}Eu_xGe_3O_{10}$, CaYb_{2-x}Er_xGe₃O₁₀ и CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺. Установлено, что все соединения и твердые растворы замещения на их основе кристаллизуются в пр.гр. $P2_1/c$, Z = 4. По результатам системного кристаллохимического анализа показано, что германаты $CaRE_2Ge_3O_{10}$ (*RE* = Y, La–Yb) образуют морфотропный ряд, внутри которого реализуются фазовые переходы I и II рода. На основе анализа морфотропных преобразований выявлены границы устойчивости трех структурных типов: I - CaLa₂Ge₃O₁₀, II - Ca RE_2 Ge₃O₁₀ (RE = Pr-Eu) и III - $CaRE_2Ge_3O_{10}$ (*RE* = Y, Gd–Yb), характеризующиеся различным катионным

упорядочением, локальным окружением атомов Са и RE и различной $[Ge_{3}O_{10}]^{8-}$. геометрией триортогруппы Существенное отличие между кристаллическими структурами I И типов, формирующихся Π при морфотропном переходе I рода, обуславливает существование ограниченных растворов $CaLa_{2-x}Eu_{x}Ge_{3}O_{10}$ $(0 \le x \le 0.6)$ И $CaLa_{2-x}Nd_xGe_3O_{10}$ твердых $(0 \le x \le 1.0)$, а также различие величин коэффициентов теплового расширения для CaLa₂Ge₃O₁₀ и CaPr₂Ge₃O₁₀.

3. По результатам комплексного анализа данных спектроскопии диффузного отражения и колебательной спектроскопии продемонстрирована возможность осуществления В активированных фазах излучательных переходов, приводящих к возникновению люминесценции в диапазоне длин волн 295–3000 нм. Соединения $CaRE_2Ge_3O_{10}$ (*RE* = Y, La–Yb) и взаимные твердые растворы на их основе относятся к широкозонным диэлектрикам с величиной оптической щели $E_{gap} = 4.2-5.6$ эВ.

 $CaY_{2-x}Ln_xGe_3O_{10}$ 4. Ha основе соединений Tb, (Ln = Eu,Dy), $CaLa_{2-r}Eu_rGe_3O_{10}$ предложены новые люминесцентные материалы, позволяющие преобразовывать УФ излучение в излучение видимого (380-740 нм) спектрального диапазона. Продемонстрировано влияние на люминесцентные свойства совокупности параметров: природы и концентрации иона-допанта, кристаллической структуры матрицы, морфологических и характеристик порошков, условий возбуждения. На основе размерных $CaYb_{1.8}Er_{0.2}Ge_{3}O_{10}$ эффективный соединения предложен новый апконверсионный материал, позволяющий преобразовывать излучение ближнего ИК диапазона (980 нм) в видимый свет с квантовым выходом QY ~ 3%. В германатах CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺ реализован каскадный механизм люминесценции, в котором ионы Nd³⁺ выступают в качестве сенсибилизатора для активаторов Ho^{3+} , что позволяет конвертировать излучение с $\lambda_{ex} = 808$ нм в диапазон длин волн $\lambda_{em} = 830 - 3000$ мкм. Величина квантового выхода для $CaLa_{1.925}Nd_{0.075}Ge_{3}O_{10}$ (концентрация $Ho^{3+} = 2.0 \cdot 10^{-6}$ ат. %) составляет 13%.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ:

1. Yamane H., Tanimura R., Yamada T., Takahashi J., Kajiwara T., Shimada M. Synthesis and crystal structures of $CaY_2Ge_3O_{10}$ and $CaY_2Ge_4O_{12}$ // Journal of Solid State Chemistry. – 2006. – V. 179. – P. 289–295.

2. Kaneyoshi M. Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation // Journal of Luminescence. – 2006. – V. 121. – P. 102–108.

3. Zhang H., Fu X., Niu S., Xin Q. Blue luminescence of nanocrystalline CaZrO₃:Tm phosphors synthesized by a modified Pechini sol-gel method // Journal of Luminescence. – 2008. – V. 128. – P. 1348–1352.

4. Zhang H., Fu X., Niu S., Sun G., Xin Q. Photoluminescence of nanocrystalline $YVO_4:Tm_xDy_{1-x}$ prepared by a modified Pechini method // Materials Letters. – 2007. – V. 61. – P. 308–311.

5. Méndez M., Carvajal J.J., Cesteros Y., Aguiló M., Díaz F., Giguère A., Drouin D., Martínez-Ferrero E., Salagre P., Formentín P., Pallarès J., Marsal L.F. Sol-gel Pechini synthesis and optical spectroscopy of nanocrystalline La_2O_3 doped with Eu^{3+} // Optical Materials. – 2010. – V. 32. – P. 1686–1692.

6. Kumar R.S., Ponnusamy V. Phase formation and photoluminescence properties of Sm^{3+} doped Al₅BO₉ phosphor // Optik. – 2015. – V. 126. – P. 1224–1227.

7. Altomare A., Camalli M., Cuocci C., Giacovazzo C., Moliterni A., Rizzi R. EXPO 2009: structure solution by powder data in direct and reciprocal space // Journal of Applied Crystallography. – 2009. – V. 42. – P. 1197–1202.

8. Rietveld H.M. DA profile refinement method for nuclear and magnetic structures // Journal of Applied Crystallography. – 1969. – V. 2. – P. 65–71.

9. Toby B.H. EXPGUI, a graphical user interface for GSAS // Journal of Applied Crystallography. – 2001. – V. 34. – P. 210–213.

10. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallographica Section A. – 1976. – V. 32. – P. 751–767.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ИЗЛОЖЕНО В СЛЕДУЮЩИХ РАБОТАХ:

1. Lipina, O.A. Synthesis, crystal structure and luminescence properties of $CaY_{2-x}Eu_xGe_3O_{10}$ (x = 0-2) / O.A. Lipina, L.L. Surat, A.P. Tyutyunnik, M.A. Melkozerova, I.I. Leonidov, V.G. Zubkov // J. Solid State Chem. – 2013. – V. 206. – P. 117–121.

2. Липина, О.А. Синтез, кристаллическая структура и люминесцентные свойства $CaY_2Ge_3O_{10}:Ln^{3+}$, Ln = Eu, Tb / О.А. Липина, Л.Л. Сурат, М.А. Мелкозерова, А.П. Тютюнник, И.И. Леонидов, В.Г. Зубков // Оптика и спектроскопия. – 2014. – Т. 116. – С. 751–756.

3. Lipina, O.A. Synthesis and structural study of a new group of trigermanates, $CaRE_2Ge_3O_{10}$ (RE = La-Yb) / O.A. Lipina, L.L. Surat, A.P. Tyutyunnik, I.I. Leonidov, E.G. Vovkotrub, V.G. Zubkov // CrystEngComm. – 2015. – V. 17. – P. 3333–3344.

4. Lipina, O.A. Synthesis of $CaY_{2-x}Ln_xGe_3O_{10}$ (*Ln* = Eu, Tb) phosphors via the EDTA complexing process / O.A. Lipina, L.L. Surat, A.P. Tyutyunnik, K.G. Belova, V.G. Zubkov // J. Sol-Gel Sci. Technol. – 2015. – V. 74. –P. 550–556.

5. Липина, О.А. Инфракрасная люминесценция CaLa_{2-x}Nd_xGe₃O₁₀:Ho³⁺, Er^{3+/} О.А. Липина, Л.Л. Сурат, А.П. Тютюнник, В.Г. Зубков // Оптика и спектроскопия. – 2016. – Т. 4. – С. 562–568.

6. Lipina, O.A. Upconversion luminescence in $CaYb_{2-x}Er_xGe_3O_{10}$ (*x*=0–2) / O.A. Lipina, L.L. Surat, A.P. Tyutyunnik, V.G. Zubkov // Opt. Mater. – 2016. – V. 61. – P. 98–104.

Благодарности.

Автор выражает искреннюю благодарность своему научному руководителю д.ф.-м.н. Зубкову Владимиру Георгиевичу за участие в обсуждении полученных результатов и помощь при оформлении диссертации; к.х.н. Тютюннику Александру Петровичу за неоценимую поддержку при проведении структурных исследований и при написании диссертации; Сурат Людмиле Львовне за помощь в синтезе объектов диссертационного исследования; к.х.н. Леонидову Ивану Ильичу за исследования, проведенные методами колебательной спектроскопии, и интерпретацию полученных данных.

Автор признателен д.х.н. Красненко Татьяне Илларионовне и д.х.н. Зуеву Михаилу Георгиевичу и за рассмотрение работы и ценные рекомендации.